scispace - formally typeset
Search or ask a question

Showing papers on "Epileptogenesis published in 2005"


Journal ArticleDOI
TL;DR: Zebrafish larvae represent a powerful new system to study the underlying basis of seizure generation, epilepsy and epileptogenesis and are demonstrated to exhibit behavioral, electrographic, and molecular changes that would be expected from a rodent seizure model.

564 citations


Journal ArticleDOI
TL;DR: Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE.

268 citations


Journal Article
TL;DR: Electrophysiologic patterns typically observed during the transition from interictal to ictal activity in human mesial temporal lobe epilepsy are related to mechanisms (at a neuronal population level) involved in seizure generation through a computational model of EEG activity.
Abstract: In human partial epilepsies and in experimental models of chronic and/or acute epilepsy, the role of inhibition and the relationship between the inhibition and excitation and epileptogenesis has long been questioned. Besides experimental methods carried out either in vitro (human or animal tissue) or in vivo (animals), pathophysiologic mechanisms can be approached by direct recording of brain electrical activity in human epilepsy. Indeed, in some clinical presurgical investigation methods like stereoelectroencephalography, intracerebral electrodes are used in patients suffering from drug resistant epilepsy to directly record paroxysmal activities with excellent temporal resolution (in the order of 1 millisecond). The study of neurophysiologic mechanisms underlying such depth-EEG activities is crucial to progress in the understanding of the interictal to ictal transition. In this study, the authors relate electrophysiologic patterns typically observed during the transition from interictal to ictal activity in human mesial temporal lobe epilepsy (MTLE) to mechanisms (at a neuronal population level) involved in seizure generation through a computational model of EEG activity. Intracerebral EEG signals recorded from hippocampus in five patients with MTLE during four periods (during interictal activity, just before seizure onset, during seizure onset, and during ictal activity) were used to identify the three main parameters of a model of hippocampus EEG activity (related to excitation, slow dendritic inhibition and fast somatic inhibition). The identification procedure used optimization algorithms to minimize a spectral distance between real and simulated signals. Results demonstrated that the model generates very realistic signals for automatically identified parameters. They also showed that the transition from interictal to ictal activity cannot be simply explained by an increase in excitation and a decrease in inhibition but rather by time-varying ensemble interactions between pyramidal cells and local interneurons projecting to either their dendritic or perisomatic region (with slow and fast GABAA kinetics). Particularly, during preonset activity, an increasing dendritic GABAergic inhibition compensates a gradually increasing excitation up to a brutal drop at seizure onset when faster oscillations (beta and low gamma band, 15 to 40 Hz) are observed. These faster oscillations are then explained by the model feedback loop between pyramidal cells and interneurons targeting their perisomatic region. These findings obtained from model identification in human temporal lobe epilepsy are in agreement with some results obtained experimentally, either on animal models of epilepsy or on the human epileptic tissue.

249 citations


Journal ArticleDOI
TL;DR: A functional interpretation of the different changes in perisomatic inhibition and dendritic inhibition in epileptic human temporal lobe is provided, and the potential consequences of the loss of interneuron-selective interneurons are considered.

214 citations


Journal ArticleDOI
TL;DR: New strategies have been developed aimed at the local reconstitution of the inhibitory adenosinergic tone by intracerebral implantation of cells engineered to release adenosine.
Abstract: Adenosine, as the brain's endogenous anticonvulsant, is considered to be responsible for seizure arrest and postictal refractoriness. On the other hand, deficiencies within the adenosine-based neuromodulatory system may contribute to epileptogenesis. Based on these natural mechanisms and on findings that adenosine and its analogs can suppress pharmacoresistant seizures, a new field of adenosine-based therapies has emerged, including the use of adenosine receptor agonists and adenosine transport inhibitors, or the inhibition of adenosine kinase, which is thought to be the key enzyme for the regulation of intra- and extracellular adenosine levels. However, most of these pharmacological approaches are limited by strong systemic side effects ranging from a decrease of heart rate, blood pressure, and body temperature to sedation. Recently, new strategies have been developed aimed at the local reconstitution of the inhibitory adenosinergic tone by intracerebral implantation of cells engineered to release adenosine. Adenosine-releasing cells or devices implanted into or near a seizure focus offer new hopes for a side effect-free therapy for pharmacoresistant epilepsy.

211 citations


Journal ArticleDOI
TL;DR: Clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity is reviewed, and emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.
Abstract: Epilepsy is a common, chronic neurologic disorder characterized by recurrent unprovoked seizures. Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Such brain injury may contribute to epileptogenesis, impairments in cognitive function or the epilepsy phenotype. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Here, the authors review the clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity. We summarize work showing intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathway function after seizures, activation of the caspase and Bcl-2 families of cell death modulators and the acute and chronic neuropathologic impact of intervening in these molecular cascades. Finally, we describe evolving data on nonlethal roles for these proteins in neuronal restructuring and cell excitability that have implications for shaping the epilepsy phenotype. This review highlights the work to date on apoptosis pathway signaling during seizure-induced neuronal death and epileptogenesis, and speculates on how emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.

205 citations


Journal ArticleDOI
TL;DR: This review will focus on the synaptic and non-synaptic properties of neocortical neurons along with their ability to produce synchronous activity, the anatomical and functional alterations that characterize limbic structures in patients presenting with mesial temporal lobe epilepsy, and the pathophysiology of seizure genesis in Taylor's type focal cortical dysplasia.

193 citations


Journal ArticleDOI
TL;DR: Whether atrophy of the EC evaluated by the quantitative magnetic resonance imaging (MRI) method is correlated with the epileptogenicity of this structure in TLE is determined.
Abstract: Summary: Purpose: Several studies have demonstrated diminution in the volume of entorhinal cortex (EC) ipsilateral to the pathologic side in patients with temporal lobe epilepsy (TLE). The relation between the degree of EC atrophy and the epileptogenicity of this structure has never been directly studied. The purpose of the study was to determine whether atrophy of the EC evaluated by the quantitative magnetic resonance imaging (MRI) method is correlated with the epileptogenicity of this structure in TLE. Methods: Intracerebral recordings (SEEG method) of seizures from 11 patients with mesial TLE were analyzed. Seizures were classified according to patterns of onset: pattern 1 was the emergence of a low-frequency, high-amplitude rhythmic spiking followed by a tonic discharge, and pattern 2 was the emergence of a tonic discharge in the mesial structures. A nonlinear measure of SEEG signal interdependencies was used to evaluate the functional couplings occurring between hippocampus (Hip) and EC at seizure onset. MRI volumetric analysis was performed by using a T1-weighted three-dimensional gradient-echo sequence in TLE patients and 12 healthy subjects. Results: Significant interactions between Hip and Ec were quantified at seizure onset. The EC was found to be the leader structure in most of the pattern 2 seizures. Volumetric measurements of EC demonstrated an atrophy in 63% of patients ipsilateral to the epileptic side. A significant correlation between the strength of EC–Hip coupling and the degree of atrophy was found. In addition, in those patients that had a normal EC volume, the EC was never the leader structure in Ec–Hip coupling. Conclusions: These results validate the potential role of volumetry to predict the epileptogenesis of the EC in patients with hippocampal sclerosis and MTLE.

184 citations


Journal ArticleDOI
08 Dec 2005-Neuron
TL;DR: It is reported that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional, and suggested that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergicsynapses are required for that purpose.

178 citations


Journal ArticleDOI
TL;DR: The knowledge of the role of the ion channels in the epilepsies is allowing the design of new and more specific therapeutic strategies.
Abstract: The role of voltage-gated and ligand-gated ion channels in epileptogenesis of both genetic and acquired epilepsies, and as targets in the development of new antiepileptic drugs (AEDs) is reviewed. Voltage-gated Na+ channels are essential for action potentials, and their mutations are the substrate for generalised epilepsy with febrile seizures plus and benign familial neonatal infantile seizures; Na+ channel inhibition is the primary mechanism of carbamazepine, phenytoin and lamotrigine, and is a probable mechanism for many other classic and novel AEDs. Voltage-gated K+ channels are essential in the repolarisation and hyperpolarisation that follows paroxysmal depolarisation shifts (PDSs), and their mutations are the substrate for the benign neonatal epilepsy and episodic ataxia type 1; they are new targets for AEDs such as retigabine. Voltage-gated Ca2+ channels are involved in neurotransmitter release, in the sustained depolarisation-phase of PDSs, and in the generation of absence seizures; their mutations are a substrate for juvenile myoclonic epilepsy and the absence-like pattern seen in some mice; the antiabsence effect of ethosuximide is due to the inhibition of thalamic T-type Ca2+ channels. Voltage-gated Cl- channels are implicated in GABA(A) transmission, and mutations in these channels have been described in some families with juvenile myoclonic epilepsies, epilepsy with grand mal seizures on awakening or juvenile absence epilepsy. Hyperpolarisation-activated cation channels have been implicated in spike-wave seizures and in hippocampal epileptiform discharges. The Cl- ionophore of the GABA(A) receptor is responsible for the rapid post-PDS hyperpolarisation, it has been involved in epileptogenesis both in animals and humans, and mutations in these receptors have been found in families with juvenile myoclonic epilepsy or generalised epilepsy with febrile seizures plus; enhancement of GABA(A) inhibitory transmission is the primary mechanism of benzodiazepines and phenobarbital and is a mechanistic approach to the development of novel AEDs such as tiagabine or vigabatrin. Altered GABA(B)-receptor function is implicated in spike-wave seizures. Ionotropic glutamate receptors are implicated in the sustained depolarisation phase of PDS and in epileptogenesis both in animals and humans; felbamate, phenobarbital and topiramate block these receptors, and attenuation of glutamatergic excitatory transmission is another new mechanistic approach. Mutations in the nicotinic acetylcholine receptor are the substrates for the nocturnal frontal lobe epilepsy. The knowledge of the role of the ion channels in the epilepsies is allowing the design of new and more specific therapeutic strategies.

175 citations


Journal ArticleDOI
TL;DR: A role for homeostatic synaptic plasticity as a novel mechanism of post-traumatic epileptogenesis is supported by computer models of neocortex incorporating a biologically basedHomeostatic plasticity rule that operates to maintain firing rates.
Abstract: Chronically isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of post-traumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in chronically isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize neuronal activity) induced by low neuronal activity after deafferentation. To test this hypothesis we constructed computer models of neocortex incorporating a biologically based homeostatic plasticity rule that operates to maintain firing rates. After deafferentation, homeostatic upregulation of excitatory synapses on pyramidal cells, either with or without concurrent downregulation of inhibitory synapses or upregulation of intrinsic excitability, initiated slowly repeating burst discharges that closely resembled the epileptiform burst discharges recorded in chronically isolated neocortex. These burst discharges lasted a few hundred ms, propagated at 1-3 cm/s and consisted of large (10-15 mV) intracellular depolarizations topped by a small number of action potentials. Our results support a role for homeostatic synaptic plasticity as a novel mechanism of post-traumatic epileptogenesis.

Journal ArticleDOI
TL;DR: It is demonstrated that profound alterations in GABA-mediated synaptic inhibition play an essential role in the process of epileptogenesis in patients with FCD and Immunohistochemical staining revealed a scattering of GABAergic interneurons across dysplastic cortex and striking reductions in GABA transporter expression.
Abstract: Focal cortical dysplasia (FCD) is a common and important cause of medically intractable epilepsy. In patients with temporal lobe epilepsy and in several animal models, compromised neuronal inhibition, mediated by GABA, contributes to seizure genesis. Although reduction in GABAergic interneuron density has been reported in FCD tissue samples, there is little available information on the resulting physiological changes in synaptic inhibition and the potential contribution of these changes to epileptogenesis in the dysplastic human brain. Using visualized whole-cell patch-clamp recordings from identified neurons in tissue slices obtained from patients with FCD, we demonstrate that GABAA-receptor-mediated inhibition is substantially altered in regions of dysplasia. These alterations include a significant reduction in IPSC frequency and a potentially compensatory decrease in transporter-mediated GABA reuptake function; the latter is marked by a significant increase in the decay-time constant for evoked and spontaneous IPSCs and a lack of effect of the GABA transport-inhibitor 1-[2([(diphenylmethylene)imino]oxy)ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride on IPSC kinetics. Immunohistochemical staining revealed a scattering of GABAergic interneurons across dysplastic cortex and striking reductions in GABA transporter expression. Together, these results suggest that profound alterations in GABA-mediated synaptic inhibition play an essential role in the process of epileptogenesis in patients with FCD.

Journal ArticleDOI
TL;DR: Refractory epilepsy associated with HH is the premier human model for subcortical epilepsy and an excellent model for secondary epileptogenesis and epileptic encephalopathy.

Journal ArticleDOI
TL;DR: Functional and neurochemical alterations of the contralateral side were studied to find candidate mechanisms underlying the lack of a mirror focus in this model of TLE and likely reflect long-ranging network alterations underlying the independent evolution of the two hippocampal formations during the development of an epileptic focus.

Journal ArticleDOI
TL;DR: The specificity and potency of NPD1 indicate a potential target for therapeutic intervention for stroke, age-related macular degeneration, spinal cord injury, and other neuroinflammatory or neurodegenerative diseases.
Abstract: Synaptic activity and ischemia/injury promote lipid messenger formation through phospholipase-mediated cleavage of specific phospholipids from membrane reservoirs. Lipid messengers modulate signaling cascades, contributing to development, differentiation, function (e.g., memory), protection, regeneration, and repair of neurons and overall regulation of neuronal, glial, and endothelial cell functional integrity. Oxidative stress disrupts lipid signaling and promotes lipid peroxidation and neurodegeneration. Lipid signaling at the neurovascular unit (neurons, astrocytes, oligodendrocytes, microglia, and cells of the microvasculature) is altered in early cerebrovascular and neurodegenerative disease. We discuss how lipid signaling regulates critical events in neuronal survival. Aberrant synaptic plasticity (e.g., epileptogenesis) is highlighted to show how gene expression may drive synaptic circuitry formation in the "wrong" direction. Docosahexaenoic acid has been implicated in memory, photoreceptor cell biogenesis and function, and neuroprotection. Free docosahexaenoic acid released in the brain during experimental stroke leads to the synthesis of stereospecific messengers through oxygenation pathways. One messenger, 10,17S-docosatriene (neuroprotectin D1; NPD1), counteracts leukocyte infiltration and proinflammatory gene expression in brain ischemia-reperfusion. In retina, photoreceptor survival depends on retinal pigment epithelial (RPE) cell integrity. NPD1 is synthesized in RPE cells undergoing oxidative stress, potently counteracts oxidative stress-triggered apoptotic DNA damage in RPE, upregulates antiapoptotic proteins Bcl-2 and Bcl-x(L), and decreases proapoptotic Bax and Bad expression. These findings expand our understanding of how the nervous system counteracts redox disturbances, mitochondrial dysfunction, and proinflammatory conditions. The specificity and potency of NPD1 indicate a potential target for therapeutic intervention for stroke, age-related macular degeneration, spinal cord injury, and other neuroinflammatory or neurodegenerative diseases.

Journal ArticleDOI
TL;DR: Treatment of SE with DZP within 2 h reduces the risk of epilepsy later in life, and if epilepsy develops, it is milder than in the vehicle group.

Journal ArticleDOI
TL;DR: The hypothesis that impairment of potassium uptake through astrocyte inward rectifier potassium (Kir) channels may contribute to epileptogenesis in Tsc1GFAPCKO mice is investigated.
Abstract: Summary: Purpose: Individuals with tuberous sclerosis complex (TSC) frequently have intractable epilepsy. To gain insights into mechanisms of epileptogenesis in TSC, we previously developed a mouse model of TSC with conditional inactivation of the Tsc1 gene in glia (Tsc1GFAPCKO mice). These mice develop progressive seizures, suggesting that glial dysfunction may be involved in epileptogenesis in TSC. Here, we investigated the hypothesis that impairment of potassium uptake through astrocyte inward rectifier potassium (Kir) channels may contribute to epileptogenesis in Tsc1GFAPCKO mice. Methods: Kir channel function and expression were examined in cultured Tsc1-deficient astrocytes. Kir mRNA expression was analyzed in astrocytes microdissected from neocortical sections of Tsc1GFAPCKO mice. Physiological assays of astrocyte Kir currents and susceptibility to epileptiform activity induced by increased extracellular potassium were further studied in situ in hippocampal slices. Results: Cultured Tsc1-deficient astrocytes exhibited reduced Kir currents and decreased expression of specific Kir channel protein subunits, Kir2.1 and Kir6.1. mRNA expression of the same Kir subunits also was reduced in astrocytes from neocortex of Tsc1GFAPCKO mice. By using pharmacologic modulators of signalling pathways implicated in TSC, we showed that the impairment in Kir channel function was not affected by rapamycin inhibition of the mTOR/S6K pathway, but was reversed by decreasing CDK2 activity with roscovitine or retinoic acid. Last, hippocampal slices from Tsc1GFAPCKO mice exhibited decreased astrocytic Kir currents, as well as increased susceptibility to potassium-induced epileptiform activity. Conclusions: Impaired extracellular potassium uptake by astrocytes through Kir channels may contribute to neuronal hyperexcitability and epileptogenesis in a mouse model of TSC.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed experimental and clinical evidence for seizure-related progressive brain damage and discussed possible mechanisms of ongoing brain atrophy in epilepsy, concluding that seizures induce brain plasticity that may result in eithe
Abstract: Purpose of reviewThis article reviews recent experimental and clinical evidence for seizure-related progressive brain damage and discusses possible mechanisms of ongoing brain atrophy in epilepsy.Recent findingsExperimental data indicate that seizures induce brain plasticity that may result in eithe

Journal ArticleDOI
TL;DR: Interictal spikes appear before the first spontaneous seizures in animal models of acquired epilepsy, and spikes are sufficient to induce long-term changes in synaptic connections between neurons.
Abstract: Interictal spikes are periodic, very brief bursts of neuronal activity that are observed in the electroencephalogram of patients with chronic epilepsy. These spikes are useful diagnostically, but we do not know why they are so strongly associated with the spontaneous seizures that characterize chronic epilepsy. Interictal spikes appear before the first spontaneous seizures in animal models of acquired epilepsy, and spikes are sufficient to induce long-term changes in synaptic connections between neurons. Thus, spikes may guide the development of the neuronal circuits that initiate spontaneous seizures. If so, then attempts to prevent or cure epilepsy may best be directed at spikes rather than seizures.

Journal ArticleDOI
TL;DR: It is reported that the minimal promoter of the human alpha4 subunit gene (GABRA4p), when used to drive reporter gene expression from adeno-associated viral vectors, controls condition-specific up-regulation in response to status epilepticus, defining a transcriptional mechanism for seizure-induced changes in levels of alpha4Subunit containing GABA(A) receptors.
Abstract: GABA is the major inhibitory transmitter at CNS synapses. Changes in subunit composition of the pentameric GABAA receptor, including increased levels of α4 subunit in dentate granule cells and associated functional alterations such as increased zinc blockade of GABA currents, are hypothesized to be critical components of epileptogenesis. Here, we report that the minimal promoter of the human α4 subunit gene (GABRA4p), when used to drive reporter gene expression from adeno-associated viral vectors, controls condition-specific up-regulation in response to status epilepticus, defining a transcriptional mechanism for seizure-induced changes in levels of α4 subunit containing GABAA receptors. Transfection studies in primary hippocampal neurons show that inducible early growth response factor 3 (Egr3) up-regulates GABRA4p activity as well as the levels of endogenous α4 subunits. Given that Egr3 knockout mice display ≈50% less GABRA4 mRNAs in the hippocampus and that increases in α4 and Egr3 mRNAs in response to pilocarpine-induced status epilepticus are accompanied by increased binding of Egr3 to GABRA4 in dentate granule cells, our findings support a role for Egr3 as a major regulator of GABRA4 in developing neurons and in epilepsy.

Journal ArticleDOI
TL;DR: Findings raise doubts about dentate granule cells as a source of spontaneous seizures in rats subjected to prolonged SE and suggest that dentate gyrus neuron loss and mossy fiber sprouting are not primary epileptogenic mechanisms in this animal model.
Abstract: The process of postinjury hippocampal epileptogenesis may involve gradually developing dentate granule cell hyperexcitability caused by neuron loss and synaptic reorganization. We tested this hypothesis by repeatedly assessing granule cell excitability after pilocarpine-induced status epilepticus (SE) and monitoring granule cell behavior during 235 spontaneous seizures in awake, chronically implanted rats. During the first week post-SE, granule cells exhibited diminished paired-pulse suppression and decreased seizure discharge thresholds in response to afferent stimulation. Spontaneous seizures often began during the first week after SE, recruited granule cell discharges that followed behavioral seizure onsets, and evoked c-Fos expression in all hippocampal neurons. Paired-pulse suppression and epileptiform discharge thresholds increased gradually after SE, eventually becoming abnormally elevated. In the chronic epileptic state, interictal granule cell hyperinhibition extended to the ictal state; granule cells did not discharge synchronously before any of 191 chronic seizures. Instead, granule cells generated only low-frequency voltage fluctuations (presumed "field excitatory postsynaptic potentials") during 89% of chronic seizures. Granule cell epileptiform discharges were recruited during 11% of spontaneous seizures, but these occurred only at the end of each behavioral seizure. Hippocampal c-Fos after chronic seizures was expressed primarily by inhibitory interneurons. Thus, granule cells became progressively less excitable, rather than hyperexcitable, as mossy fiber sprouting progressed and did not initiate the spontaneous behavioral seizures. These findings raise doubts about dentate granule cells as a source of spontaneous seizures in rats subjected to prolonged SE and suggest that dentate gyrus neuron loss and mossy fiber sprouting are not primary epileptogenic mechanisms in this animal model.

Journal ArticleDOI
TL;DR: In this article, the expression of different multidrug transporters during epileptogenesis in the rat was investigated, and it was shown that MRP overexpression was associated with lower PHT levels in the brain, which was reversed through inhibition of MRPs.
Abstract: Summary: Purpose: Overexpression of multidrug transporters may play a role in the development of pharmacoresistance by decreasing extracellular drug levels in the brain. However, it is not known whether overexpression is due to an initial insult or evolves more gradually because of recurrent spontaneous seizures. In the present study, we investigated the expression of different multidrug transporters during epileptogenesis in the rat. In addition, we determined whether these transporters affected phenytoin (PHT) distribution in the brain. Methods: Expression of multidrug resistance–associated proteins MRP1 and MRP2 and breast cancer–resistance protein (BCRP) was examined after electrically induced status epilepticus (SE) by immunocytochemistry and Western blot analysis. Brain/blood PHT levels were determined by high-performance liquid chromatography (HPLC) analysis in the presence and absence of the MRP inhibitor probenecid. Results: Shortly after SE, MRP1, MRP2, and BCRP were upregulated in astrocytes within several limbic structures, including hippocampus. In chronic epileptic rats, these proteins were overexpressed in the parahippocampal cortex, specifically in blood vessels and astrocytes surrounding these vessels. Overexpression was related to the occurrence of SE and was present mainly in rats with a high seizure frequency. Brain PHT levels were significantly lower in epileptic rats compared with control rats, but pharmacologic inhibition of MRPs increased the PHT levels. Conclusions: Overexpression of MRP and BCRP was induced by SE as well as recurrent seizures. Moreover, overexpression was associated with lower PHT levels in the brain, which was reversed through inhibition of MRPs. These data suggest that administration of antiepileptic drugs in combination with specific inhibitors for multidrug transporters may be a promising therapeutic strategy in pharmacoresistant patients.

Journal ArticleDOI
TL;DR: In vivo administration of the CaN inhibitor FK-506 significantly suppressed hypoxic seizures, and posttreatment with NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline) or FK -506 blocked the hypoxic seizure-induced increase in CaN expression, suggesting that Ca2-permeable AMPARs and CaN regulate inhibitory synaptic transmission in a novel plasticity pathway
Abstract: Hypoxia is the most common cause of perinatal seizures and can be refractory to conventional anticonvulsant drugs, suggesting an age-specific form of epileptogenesis. A model of hypoxia-induced seizures in immature rats reveals that seizures result in immediate activation of the phosphatase calcineurin (CaN) in area CA1 of hippocampus. After seizures, CA1 pyramidal neurons exhibit a downregulation of GABA A receptor (GABA A R)-mediated inhibition that was reversed by CaN inhibitors. CaN activation appears to be dependent on seizure-induced activation of Ca 2+ -permeable AMPA receptors (AMPARs), because the upregulation of CaN activation and GABA A R inhibition were attenuated by GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] or Joro spider toxin. GABA A R β2/3 subunit protein was dephosphorylated at 1 h after seizures, suggesting this subunit as a possible substrate of CaN in this model. Finally, in vivo administration of the CaN inhibitor FK-506 significantly suppressed hypoxic seizures, and posttreatment with NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[ f ]quinoxaline) or FK-506 blocked the hypoxic seizure-induced increase in CaN expression. These data suggest that Ca 2+ -permeable AMPARs and CaN regulate inhibitory synaptic transmission in a novel plasticity pathway that may play a role in epileptogenesis in the immature brain.

Journal ArticleDOI
TL;DR: The selective contribution of neuronal gap junction (GJ) communication via connexin 36 (Cx36) channels to epileptogenesis and to the maintenance and propagation of seizures was investigated by using pharmacologic approaches with the 4‐aminopyridine in vivo epilepsy model.
Abstract: Summary: Purpose: The selective contribution of neuronal gap junction (GJ) communication via connexin 36 (Cx36) channels to epileptogenesis and to the maintenance and propagation of seizures was investigated in both the primary focus and the mirror focus by using pharmacologic approaches with the 4aminopyridine in vivo epilepsy model. Methods: ECoG recording was performed on anesthetized adult rats, in which either quinine, a selective blocker of Cx36, or the broad-spectrum GJ blockers carbenoxolone and octanol were applied locally, before the induction or at already active epileptic foci. Results: The blockade of Cx36 channels by quinine before the induction of epileptiform activity slightly reduced the epileptogenesis. When quinine was applied after 25‐30 repetitions of seizures, a new discharge pattern appeared with frequencies >15 Hz at the initiation of seizures. In spite of the increased number of seizures, the summated ictal activity decreased, because of the significant reduction in the duration of the seizures. The amplitudes of the seizure discharges of all the patterns decreased, with the exception of those with frequencies of 11‐12 Hz. The blockade of Cx36 channels and the global blockade of the GJ channels resulted in qualitatively different modifications in ictogenesis. Conclusions: The blockade of Cx36 channels at the already active epileptic focus has an anticonvulsive effect and modifies the manifestation of the 1- to 18-Hz seizure discharges. Our findings indicate that the GJ communication via Cx36 channels is differently involved in the synchronization of the activities of the networks generating seizure discharges with different frequencies. Additionally, we conclude that both neuronal and glial GJ communication contribute to the manifestation and propagation of seizures in the adult rat neocortex. Ke yW ords: Gap junctions—Cx36—4-AP‐induced seizure—Epileptogenesis— Ictogenesis—In vivo—Quinine—Carbenoxolone. Epilepsy is one of the most prevalent neurologic disorders worldwide, but pharmacologic therapy remains the best remedy for its treatment. One reason for the incomplete effectiveness of the currently available anticonvulsants is that they were identified by using the same classic epilepsy models, which mainly involve the same actions, without a consideration of the variations in the pathophysiologic mechanisms that result in epilepsy. Growing evidence indicates that, besides the chemical synapses, direct coupling via gap junction (GJ) channels provides a second major pathway, contributing to normal and abnormal physiologic rhythms both during development and in the adult brain (1‐3). GJ channels mediating electrical signaling are involved in the physiologic synchronizing mechanism in the brain (3‐5) and contribute to pathologic hypersynchrony in various in vitro (6‐9) and in vivo (10‐13) epilepsy models.

Journal ArticleDOI
TL;DR: It is proposed that histological abnormalities occurring during postnatal maturation of the brain challenge any neuropathological classification in this group of young patients with severe drug-resistant early onset focal epilepsies, and are classified according to FCD type I.
Abstract: Cortical dysplasias comprise a variable spectrum of clinical, neuroradiological and histopathological findings. We report about a cohort of 25 pediatric patients (mean age 8.1±4.8 years) with severe drug-resistant early onset focal epilepsies (mean duration 2.1±0.4 years), mental/psychomotor retardation, and multilobar epileptogenesis. Compared to age-matched biopsy controls, microscopical inspection of neurosurgically resected specimens revealed dysplastic neurons with/without balloon cells in only 7 patients. According to Palmini’s classification system, these lesions were categorized as focal cortical dysplasia (FCD) type II. All other patients presented with rather subtle but statistically significant neuroanatomical abnormalities. We identified increased numbers of ectopic neurons in white matter and cortical gliosis. However, most intriguing was our finding of a microcolumnar arrangement of cortical neurons in layer III. These microcolumns can be statistically defined as vertical lining of more than eight neurons (two times standard deviation of cell countings obtained from controls). In addition, neuronal perikarya were significantly smaller in epilepsy patients. Although histological abnormalities occurring during postnatal maturation of the brain challenge any neuropathological classification in this group of young patients, we propose that these findings are classified according to FCD type I. Our observations support a concept compatible with regional loss of high-order brain organization.

Journal ArticleDOI
TL;DR: Experimental studies that have analyzed at the ultrastructural level the consequences of LTP in rodents, and plastic changes in the hippocampus of experimental models of epilepsy and human tissue obtained during surgeries for intractable temporal lobe epilepsy are focused on.
Abstract: Central nervous system synapses have an intrinsic plastic capacity to adapt to new conditions with rapid changes in their structure. Such activity-dependent refinement occurs during development and learning, and shares features with diseases such as epilepsy. Quantitative ultrastructural studies based on serial sectioning and reconstructions have shown various structural changes associated with synaptic strength involving both dendritic spines and postsynaptic densities (PSDs) during long-term potentiation (LTP). In this review, we focus on experimental studies that have analyzed at the ultrastructural level the consequences of LTP in rodents, and plastic changes in the hippocampus of experimental models of epilepsy and human tissue obtained during surgeries for intractable temporal lobe epilepsy (TLE). Modifications in spine morphology, increases in the proportion of synapses with perforated PSDs, and formation of multiple spine boutons arising from the same dendrite are the possible sequence of events that accompany hippocampal LTP. Structural remodeling of mossy fiber synapses and formation of aberrant synaptic contacts in the dentate gyrus are common features in experimental models of epilepsy and in human TLE. Combined electrophysiological and ultrastructural studies in kindled rats and chronic epileptic animals have indicated the occurrence of seizure- and neuron loss-induced changes in the hippocampal network. In these experiments, the synaptic contacts on granule cells are similar to those described for LTP. Such changes could be associated with enhancement of synaptic efficiency and may be important in epileptogenesis.

Journal ArticleDOI
TL;DR: Results provide additional evidence that the differential expression of NR2B in dysplastic human neocortex may play a role in the expression of in-situ epileptogenesis in human CD.

Journal ArticleDOI
TL;DR: Changes in the expression of GABA A and GABA B receptor mRNAs were observed in two animal models of epileptogenesis and suggest substantial and cell specific rearrangement of GABA receptors.

Journal ArticleDOI
TL;DR: BoNT/E delivery to the hippocampus is both antiictal and antiepileptogenic in experimental models of epilepsy, and prevents neuronal loss and long-term cognitive deficits associated with kainic acid seizures.
Abstract: Experimental studies suggest that the delivery of antiepileptic agents into the seizure focus might be of potential utility for the treatment of focal-onset epilepsies. Botulinum neurotoxin E (BoNT/E) causes a prolonged inhibition of neurotransmitter release after its specific cleavage of the synaptic protein synaptosomal-associated protein of 25 kDa (SNAP-25). Here, we show that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. BoNT/E effects persist for at least 3 weeks, as determined by immunodetection of cleaved SNAP-25 and loss of intact SNAP-25. The delivery of BoNT/E to the rat hippocampus dramatically reduces both focal and generalized kainic acid-induced seizures as documented by behavioral and electrographic analysis. BoNT/E treatment also prevents neuronal loss and long-term cognitive deficits associated with kainic acid seizures. Moreover, BoNT/E-injected rats require 50% more electrical stimulations to reach stage 5 of kindling, thus indicating a delayed epileptogenesis. We conclude that BoNT/E delivery to the hippocampus is both antiictal and antiepileptogenic in experimental models of epilepsy.

Journal ArticleDOI
TL;DR: In CD tissue alternate mechanisms of epileptogenesis should be considered, and it is suggested that GABAergic synaptic circuits interacting with cytomegalic and normal-pyramidal neurons with immature receptor properties might contribute to seizure generation.
Abstract: Seizures in cortical dysplasia (CD) could be from cytomegalic neurons and balloon cells acting as epileptic 'pacemakers', or abnormal neurotransmission. This study examined these hypotheses using in vitro electrophysiological techniques to determine intrinsic membrane properties and spontaneous glutamatergic and GABAergic synaptic activity for normal-pyramidal neurons, cytomegalic neurons and balloon cells from 67 neocortical sites originating from 43 CD patients (ages 0.2-14 years). Magnetic resonance imaging (MRI), (18)fluoro-2-deoxyglucose positron emission tomography (FDG-PET) and electrocorticography graded cortical sample sites from least to worst CD abnormality. Results found that cytomegalic neurons and balloon cells were observed more frequently in areas of severe CD compared with mild or normal CD regions as assessed by FDG-PET/MRI. Cytomegalic neurons (but not balloon cells) correlated with the worst electrocorticography scores. Electrophysiological recordings demonstrated that cytomegalic and normal-pyramidal neurons displayed similar firing properties without intrinsic bursting. By contrast, balloon cells were electrically silent. Normal-pyramidal and cytomegalic neurons displayed decreased spontaneous glutamatergic synaptic activity in areas of severe FDG-PET/MRI abnormalities compared with normal regions, while GABAergic activity was unaltered. In CD, these findings indicate that cytomegalic neurons (but not balloon cells) might contribute to epileptogenesis, but are not likely to be 'pacemaker' cells capable of spontaneous paroxysmal depolarizations. Furthermore, there was more GABA relative to glutamate synaptic neurotransmission in areas of severe CD. Thus, in CD tissue alternate mechanisms of epileptogenesis should be considered, and we suggest that GABAergic synaptic circuits interacting with cytomegalic and normal-pyramidal neurons with immature receptor properties might contribute to seizure generation.