scispace - formally typeset
Search or ask a question

Showing papers on "Fermentation published in 2004"


Journal ArticleDOI
TL;DR: To improve the quality of the processed beans, more research is needed on pectinase production by yeasts, better depulping, fermenter design, and the use of starter cultures.
Abstract: The first stage of chocolate production consists of a natural, seven-day microbial fermentation of the pectinaceous pulp surrounding beans of the tree Theobroma cacao. There is a microbial succession of a wide range of yeasts, lactic-acid, and acetic-acid bacteria during which high temperatures of up to 50°C and microbial products, such as ethanol, lactic acid, and acetic acid, kill the beans and cause production of flavor precursors. Over-fermentation leads to a rise in bacilli and filamentous fungi that can cause off-flavors. The physiological roles of the predominant micro-organisms are now reasonably well understood and the crucial importance of a well-ordered microbial succession in cocoa aroma has been established. It has been possible to use a synthetic microbial cocktail inoculum of just 5 species, including members of the 3 principal groups, to mimic the natural fermentation process and yield good quality chocolate. Reduction of the amount of pectin by physical or mechanical means can also lead t...

597 citations


Journal ArticleDOI
TL;DR: Modifications of the fermentation process, by redirection of metabolic pathways, gas sparging and maintaining a low partial pressure of hydrogen to make the reaction thermodynamically favorable, efficient product removal, optimum bioreactor design and integrating fermentative process with that of photosynthesis are some of the ways that have been attempted to improve hydrogen productivity.
Abstract: Fermentation of biomass or carbohydrate-based substrates presents a promising route of biological hydrogen production compared with photosynthetic or chemical routes. Pure substrates, including glucose, starch and cellulose, as well as different organic waste materials can be used for hydrogen fermentation. Among a large number of microbial species, strict anaerobes and facultative anaerobic chemoheterotrophs, such as clostridia and enteric bacteria, are efficient producers of hydrogen. Despite having a higher evolution rate of hydrogen, the yield of hydrogen [mol H2 (mol substrate(-1))] from fermentative processes is lower than that achieved using other methods; thus, the process is not economically viable in its present form. The pathways and experimental evidence cited in the literature reveal that a maximum of four mol of hydrogen can be obtained from substrates such as glucose. Modifications of the fermentation process, by redirection of metabolic pathways, gas sparging and maintaining a low partial pressure of hydrogen to make the reaction thermodynamically favorable, efficient product removal, optimum bioreactor design and integrating fermentative process with that of photosynthesis, are some of the ways that have been attempted to improve hydrogen productivity. This review briefly describes recent advances in these approaches towards improvement of hydrogen yield by fermentation.

587 citations


Journal ArticleDOI
TL;DR: Researchers have engineered xylose metabolism in S. cerevisiae, showing that adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g−1 sugar consumed, so commercialization seems feasible for some applications.
Abstract: The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g−1 sugar consumed, so commercialization seems feasible for some applications.

506 citations


Journal ArticleDOI
TL;DR: In this article, the simultaneous saccharification and fermentation (SSF) process for ethanol production from various lignocellulosic woody (poplar and eucalyptus) and herbaceous ( Sorghum sp. bagasse, wheat straw and Brassica carinata residue) materials has been assayed using the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875.

501 citations


Journal ArticleDOI
Sun-Kee Han1, Hang-Sik Shin1
TL;DR: In this article, the effect of dilution rate (D) on the production of hydrogen and metabolites in hydrogen fermentation was investigated, and the results showed that D control led environmental conditions to favor hydrogen production, and that the fermentation efficiency was improved by the enhanced degradation of slowly degradable matters.

488 citations


Journal ArticleDOI
TL;DR: Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101 with H2 and CO2 as the carrier gases to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization.
Abstract: Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H(2) and CO(2) as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l(-1) and 60 g l(-1), respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l(-1) and produced 17.6 g total solvents l(-1) (yield 0.39 g g(-1), productivity 0.29 g l(-1) h(-1)). Using the integrated fermentation-gas stripping product-recovery system with CO(2) and H(2) as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l(-1)) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g(-1) and 1.16 g l(-1) h(-1), respectively.

449 citations


Journal ArticleDOI
TL;DR: It is demonstrated that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylOSE isomerase (EC 5.3.1.5) is functionally expressed.
Abstract: When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity for both NADPH and NADH, anaerobic alcoholic fermentation is feasible but requires the formation of large amounts of polyols (e.g., xylitol) to maintain a closed redox balance. As a result, the ethanol yield on xylose will be sub-optimal. This paper demonstrates that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylose isomerase (EC 5.3.1.5) is functionally expressed. Transformants expressing the XylA gene from the anaerobic fungus Piromyces sp. E2 (ATCC 76762) grew in synthetic medium in shake-flask cultures on xylose with a specific growth rate of 0.005 h−1. After prolonged cultivation on xylose, a mutant strain was obtained that grew aerobically and anaerobically on xylose, at specific growth rates of 0.18 and 0.03 h−1, respectively. The anaerobic ethanol yield was 0.42 g ethanol · g xylose−1 and also by-product formation was comparable to that of glucose-grown anaerobic cultures. These results illustrate that only minimal genetic engineering is required to recruit a functional xylose metabolic pathway in Saccharomyces cerevisiae. Activities and/or regulatory properties of native S. cerevisiae gene products can subsequently be optimised via evolutionary engineering. These results provide a gateway towards commercially viable ethanol production from xylose with S. cerevisiae.

430 citations


Journal ArticleDOI
TL;DR: Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures, consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp.
Abstract: Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.

387 citations


Journal ArticleDOI
TL;DR: The ability of yeasts to adapt to and transform furfural and HMF offers the potential for in situ detoxification of these inhibitors and suggests a genetic basis for further development of highly tolerant strains for biofuel production.
Abstract: Renewable lignocellulosic materials are attractive low-cost feedstocks for bioethanol production. Furfural and 5-hydroxymethylfurfural (HMF) are among the most potent inhibitory compounds generated from acid hydrolysis of lignocelluloses to simple sugars for fermentation. In Saccharomyces cerevisiae ATCC 211239 and NRRL Y-12632 and Pichia stipitis NRRL Y-7124, furfural and HMF inhibition were determined to be dose-dependent at concentrations from 10 to 120 mM. The yeast strains were more sensitive to inhibition by furfural than HMF at the same concentration, while combined treatment of furfural and HMF synergistically suppressed cell growth. A metabolite transformed from HMF by strain NRRL Y-12632 was isolated from the culture supernatant, and conclusively identified as 2,5-bis-hydroxymethylfuran, a previously postulated HMF alcohol, with a composition of C6H8O3 and a molecular weight of 128. It is proposed that, in the presence of HMF, the yeast reduces the aldehyde group on the furan ring of HMF into an alcohol, in a similar manner as for furfural. The accumulation of this biotransformed metabolite may be less toxic to yeast cultures than HMF, as evidenced by the rapid yeast fermentation and growth rates associated with HMF conversion. The ability of yeasts to adapt to and transform furfural and HMF offers the potential for in situ detoxification of these inhibitors and suggests a genetic basis for further development of highly tolerant strains for biofuel production.

377 citations


Journal ArticleDOI
TL;DR: A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae, indicating that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished.
Abstract: A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.

362 citations


Journal ArticleDOI
TL;DR: It was found that C. beijerinckii BA101 was defective in PTS activity and that it compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage, and gas stripping appears to be the most promising.
Abstract: An overview of advances in acetone-butanol fermentation research is presented with specific reference to the history of acetone-butanol fermentation, genetic manipulation of the butanol-producing Clostridium beijerinckii NCIMB 8052, as well as upstream and downstream processing. Specific reference is made to the development of the hyperamylolytic, hyper-"butanolagenic" C. beijerinckii BA101 strain. Amylolytic enzyme production by C. beijerinckii BA101 was 1.8- and 2.5-fold greater than that of the C. beijerinckii NCIMB 8052 strain grown in starch and glucose, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP and ATP-dependent glucose phosphorylation. It was found that C. beijerinckii BA101 was defective in PTS activity and that it compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage. The principal problem associated with acetone-butanol fermentation by C. beijerinckii or C. acetobutylicum is butanol toxicity/inhibition to the culture. To solve this problem, we have attempted various alternative in situ/online techniques of butanol removal including membrane-based systems such as pervaporation, liquid-liquid extraction, and gas stripping. We found that gas stripping and pervaporation appear to be the most promising of the in situ acetone-butanol fermentation and recovery techniques but, in terms of cost-effective industrial applications, gas stripping appears to be the most promising.

Journal ArticleDOI
TL;DR: The enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology.

Journal ArticleDOI
TL;DR: The results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in an aerobic bio-hydrogen processes.

Journal ArticleDOI
TL;DR: The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol, and the proposed model can be used to design a lager scale I CR column for production of high ethanol concentration.

Journal ArticleDOI
TL;DR: In this article, simultaneous saccharification and fermentation (SSF) for the conversion of lignocellulosics to alcohol would result in a more cost-effective process, and the results showed that OCC waste and paper sludge could be used as substrates for ethanol production in SSF.

Journal ArticleDOI
TL;DR: In strain TC44, pyruvate yield, pyRuvate titer, and the rate of pyruVate production in mineral salts medium were equivalent or better than previously reported for other biocatalysts (yeast and bacteria) requiring complex vitamin feeding strategies and complex nutrients.
Abstract: Escherichia coli TC44, a derivative of W3110, was engineered for the production of pyruvate from glucose by combining mutations to minimize ATP yield, cell growth, and CO2 production (ΔatpFH ΔadhE ΔsucA) with mutations that eliminate acetate production [poxB::FRT (FLP recognition target) ΔackA] and fermentation products (ΔfocA-pflB ΔfrdBC ΔldhA ΔadhE). In mineral salts medium containing glucose as the sole carbon source, strain TC44(ΔfocA-pflB ΔfrdBC ΔldhA ΔatpFH ΔadhE ΔsucA poxB::FRT ΔackA) converted glucose to pyruvate with a yield of 0.75 g of pyruvate per g of glucose (77.9% of theoretical yield; 1.2 g of pyruvate liters–1·h–1). A maximum of 749 mM pyruvate was produced with excess glucose. Glycolytic flux was >50% faster for TC44 producing pyruvate than for the wild-type W3110 during fully aerobic metabolism. The tolerance of E. coli to such drastic changes in metabolic flow and energy production implies considerable elasticity in permitted pool sizes for key metabolic intermediates such as pyruvate and acetyl-CoA. In strain TC44, pyruvate yield, pyruvate titer, and the rate of pyruvate production in mineral salts medium were equivalent or better than previously reported for other biocatalyts (yeast and bacteria) requiring complex vitamin feeding strategies and complex nutrients. TC44 offers the potential to improve the economics of pyruvate production by reducing the costs of materials, product purification, and waste disposal.

Journal ArticleDOI
TL;DR: In this article, the properties and applications of lactic acid, its derivatives and polymer have been discussed, and various routes to polymerization and the companies presently involved in LAC production have been covered.

Journal ArticleDOI
TL;DR: The demonstration of the fermentation of biomass‐generated producer gas to ethanol is the major focus of this article and several key findings following the introduction of producer gas included: the cells stopped growing but were still viable, ethanol was primarily produced once the cells stop growing, and cells began growing again if “clean” bottled gases were introduced following exposure to the producer gas.
Abstract: The development of low-cost, sustainable, and renewable energy sources has been a major focus since the 1970s. Fuel-grade ethanol is one energy source that has great potential for being generated from biomass. The demonstration of the fermentation of biomass-generated producer gas to ethanol is the major focus of this article in addition to assessing the effects of producer gas on the fermentation process. In this work, producer gas (primarily CO, CO(2), CH(4), H(2), and N(2)) was generated from switchgrass via gasification. The fluidized-bed gasifier generated gas with a composition of 56.8% N(2), 14.7% CO, 16.5% CO(2), 4.4% H(2), and 4.2% CH(4). The producer gas was utilized in a 4-L bioreactor to generate ethanol and other products via fermentation using a novel clostridial bacterium. The effects of biomass-generated producer gas on cell concentration, hydrogen uptake, and acid/alcohol production are shown in comparison with "clean" bottled gases of similar compositions for CO, CO(2), and H(2). The successful implementation of generating producer gas from biomass and then fermenting the producer gas to ethanol was demonstrated. Several key findings following the introduction of producer gas included: (1) the cells stopped growing but were still viable, (2) ethanol was primarily produced once the cells stopped growing (ethanol is nongrowth associated), (3) H(2) utilization stopped, and (4) cells began growing again if "clean" bottled gases were introduced following exposure to the producer gas.

Journal ArticleDOI
TL;DR: The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration, and it was shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.
Abstract: In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195°C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50°C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30°C. The phenols (0.4–0.5 g/L) and carboxylic acids (4.6–5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. © 2004 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylases by usingThe C-terminal-half region of α-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins.
Abstract: Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase by using the C-terminal-half region of alpha-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.

Journal ArticleDOI
TL;DR: In this article, a suitable extractant−diluent system for lactic acid extraction on the basis of distribution coefficient, toxicity, and feasibility for backextraction is suggested.
Abstract: Growing demand for biodegradable polymer substitutes for both conventional plastic materials and new materials of specific uses such as controlled drug delivery or artificial prostheses draws attention to the need for improvement of conventional processes for lactic acid production. Reactive extraction with a specified extractant giving a higher distribution coefficient has been proposed as a promising technique for the recovery of lactic acid. A critical analysis of the available literature data has been made, and some general conclusions have been drawn. A suitable extractant−diluent system for lactic acid extraction on the basis of distribution coefficient, toxicity, and feasibility for backextraction is suggested. Also, methods for backextraction and recovery are suggested.

Journal ArticleDOI
TL;DR: In this paper, a solid-state fermentation (SSF) was carried out using coconut oil cake (COC) as substrate for the production of alpha-amylase using a fungal culture of Aspergillus oryzae.

Journal ArticleDOI
TL;DR: Results suggest that EO alters protein degradation and amino acid deamination by inhibiting rumen microorganisms and had no influence on proteolytic or peptidolytic activity of rumen fluid or on microbial protein production or protozoal numbers.

Journal Article
TL;DR: Probiotic tomato juice could serve as a health beverage for vegetarians or consumers who are allergic to dairy products.
Abstract: This study was undertaken to determine the suitability of tomato juice as a raw material for production of probiotic juice by four lactic acid bacteria (Latobacillus acidophilus LA39, Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Tomato juice was inoculated with a 24-h-old culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were measured. The lactic acid cultures reduced the pH to 4.1 or below and increased the acidity to 0.65% or higher, and the viable cell counts (CFU) reached nearly 1.0 to 9.0 x 10(9)/ml after 72 h fermentation. The viable cell counts of the four lactic acid bacteria in the fermented tomato juice ranged from 10(6) to 10(8) CFU/ml after 4 weeks of cold storage at 4 degrees C. Probiotic tomato juice could serve as a health beverage for vegetarians or consumers who are allergic to dairy products.

Journal ArticleDOI
TL;DR: In this article, the authors examined whether imidazolium-based ionic liquids can replace conventional organic solvents in the extractive fermentation of lactate by investigating their extraction behaviors and solvent toxicity.

Journal ArticleDOI
TL;DR: Differences in the specific metabolic rate of xylose at different pHs suggests that the balance in NADH is a key in controlling the metabolic pathway used by the cells in the fermentation.

Journal ArticleDOI
TL;DR: Genome-wide searches for additional components of the anaerobic metabolism identified potential genes for pyruvate-metabolizing NADH-dependent lactate dehydrogenase (ldhA), phosphotransacetylase (pta), and acetate kinase (ackA), which demonstrated the anr- and ihfA-dependent anaerilic induction of the ackA-pta promoter.
Abstract: Denitrification and arginine fermentation are central metabolic processes performed by the opportunistic pathogen Pseudomonas aeruginosa during biofilm formation and infection of lungs of patients with cystic fibrosis. Genome-wide searches for additional components of the anaerobic metabolism identified potential genes for pyruvate-metabolizing NADH-dependent lactate dehydrogenase (ldhA), phosphotransacetylase (pta), and acetate kinase (ackA). While pyruvate fermentation alone does not sustain significant anaerobic growth of P. aeruginosa, it provides the bacterium with the metabolic capacity for long-term survival of up to 18 days. Detected conversion of pyruvate to lactate and acetate is dependent on the presence of intact ldhA and ackA-pta loci, respectively. DNA microarray studies in combination with reporter gene fusion analysis and enzyme activity measurements demonstrated the anr- and ihfA-dependent anaerobic induction of the ackA-pta promoter. Potential Anr and integration host factor binding sites were localized. Pyruvate-dependent anaerobic long-term survival was found to be significantly reduced in anr and ihfA mutants. No obvious ldhA regulation by oxygen tension was observed. Pyruvate fermentation is pH dependent. Nitrate respiration abolished pyruvate fermentation, while arginine fermentation occurs independently of pyruvate utilization.

Journal ArticleDOI
TL;DR: Coronamycin is a complex of novel peptide antibiotics with activity against pythiaceous fungi and the human fungal pathogen Cryptococcus neoformans and other compounds with antifungal activities are also produced by this endophytic streptomycete.
Abstract: Coronamycin is a complex of novel peptide antibiotics with activity against pythiaceous fungi and the human fungal pathogen Cryptococcus neoformans. It is also active against the malarial parasite, Plasmodium falciparum, with an IC(50) of 9.0 ng ml(-1). Coronamycin is produced by a verticillate Streptomyces sp. isolated as an endophyte from an epiphytic vine, Monstera sp., found in the Manu region of the upper Amazon of Peru. Bioassay-guided fractionation of the fermentation broths of this endophyte on silica gel and HPLC chromatography yielded two principal, inseparable, peptides with masses of 1217.9 and 1203.8 Da. Three other minor, but related components, are also present in the preparation. Amino acid analysis of coronamycin revealed residues of component 1, component 2, methionine, tyrosine and leucine at a ratio of 2:2:1:1:3. Other compounds with antifungal activities are also produced by this endophytic streptomycete.

Journal ArticleDOI
TL;DR: The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process and suggests the activity of feruloyl esterases produced by brewer's yeast is suggested.
Abstract: The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.

Journal ArticleDOI
TL;DR: C. ligniaria C8 (NRRL 30616) was effective at eliminating furfural and 5-HMF from CSH, and may be useful in developing a bioprocess for inhibitor abatement in the conversion of lignocellulosic biomass to fuels and chemicals.
Abstract: Acid pretreatment of lignocellulosic biomass releases furan and phenolic compounds, which are toxic to microorganisms used for subsequent fermentation. In this study, we isolated new microorganisms for depletion of inhibitors in lignocellulosic acid hydrolysates. A sequential enrichment strategy was used to isolate microorganisms from soil. Selection was carried out in a defined mineral medium containing a mixture of ferulic acid (5 mM), 5-hydroxymethylfurfural (5-HMF, 15 mM), and furfural (20 mM) as the carbon and energy sources, followed by an additional transfer into a corn stover hydrolysate (CSH) prepared using dilute acid. Subsequently, based on stable growth on these substrates, six isolates--including five bacteria related to Methylobacterium extorquens, Pseudomonas sp, Flavobacterium indologenes, Acinetobacter sp., Arthrobacter aurescens, and one fungus, Coniochaeta ligniaria--were chosen. All six isolates depleted toxic compounds from defined medium, but only C. ligniaria C8 (NRRL 30616) was effective at eliminating furfural and 5-HMF from CSH. C. ligniaria NRRL 30616 may be useful in developing a bioprocess for inhibitor abatement in the conversion of lignocellulosic biomass to fuels and chemicals.