scispace - formally typeset
Search or ask a question

Showing papers on "MIMO published in 2009"


Journal ArticleDOI
TL;DR: Space shift keying concepts are extended to incorporate channel coding, where in particular, they are considered a bit interleaved coded modulation (BICM) system using iterative decoding for both convolutional and turbo codes.
Abstract: In this paper, we present space shift keying (SSK) as a new modulation scheme, which is based on spatial modulation (SM) concepts. Fading is exploited for multiple-input multiple-output(MIMO) channels to provide better performance over conventional amplitude/phase modulation (APM) techniques. In SSK, it is the antenna index used during transmission that relays information, rather than the transmitted symbols themselves. This absence of symbol information eliminates the transceiver elements necessary for APM transmission and detection (such as coherent detectors). As well, the simplicity involved in modulation reduces the detection complexity compared to that of SM, while achieving almost identical performance gains. Throughout the paper, we illustrate SSK's strength by studying its interaction with the fading channel. We obtain tight upper bounds on bit error probability, and discuss SSK's performance under some non-ideal channel conditions (estimation error and spatial correlation). Analytical and simulation results show performance gains over APM systems (3 dB at a bit error rate of 10-5), making SSK an interesting candidate for future wireless applications. We then extend SSK concepts to incorporate channel coding, where in particular, we consider a bit interleaved coded modulation (BICM) system using iterative decoding for both convolutional and turbo codes. Capacity results are derived, and improvements over APM are illustrated (up to 1 bits/s/Hz), with performance gains of up to 5 dB.

932 citations


Journal ArticleDOI
TL;DR: This paper addresses basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques.
Abstract: Orthogonal frequency-division multiplexing (OFDM) effectively mitigates intersymbol interference (ISI) caused by the delay spread of wireless channels. Therefore, it has been used in many wireless systems and adopted by various standards. In this paper, we present a comprehensive survey on OFDM for wireless communications. We address basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques. We also describe the applications of OFDM in current systems and standards.

915 citations


Journal ArticleDOI
TL;DR: In this paper, a non-imaging optical MIMO system does not perform properly at all receiver positions due to symmetry, but an imaging based system can operate under all foreseeable circumstances, and simulations show such systems can operate at several hundred Mbit/s, and up to G Bit/s in many circumstances.
Abstract: Solid-state lighting is a rapidly growing area of research and applications, due to the reliability and predicted high efficiency of these devices. The white LED sources that are typically used for general illumination can also be used for data transmission, and Visible Light Communications (VLC) is a rapidly growing area of research. One of the key challenges is the limited modulation bandwidth of sources, typically several MHz. However, as a room or coverage space would typically be illuminated by an array of LEDs there is the potential for parallel data transmission, and using optical MIMO techniques is potentially attractive for achieving high data rates. In this paper we investigate non-imaging and imaging MIMO approaches: a non-imaging optical MIMO system does not perform properly at all receiver positions due to symmetry, but an imaging based system can operate under all foreseeable circumstances. Simulations show such systems can operate at several hundred Mbit/s, and up to Gbit/s in many circumstances.

846 citations


Journal ArticleDOI
G. Boudreau1, J. Panicker1, Ning Guo1, Rui Chang1, Neng Wang1, S. Vrzic1 
TL;DR: Viable approaches include the use of power control, opportunistic spectrum access, intra and inter-base station interference cancellation, adaptive fractional frequency reuse, spatial antenna techniques such as MIMO and SDMA, and adaptive beamforming, as well as recent innovations in decoding algorithms.
Abstract: This article provides an overview of contemporary and forward looking inter-cell interference coordination techniques for 4G OFDM systems with a specific emphasis on implementations for LTE. Viable approaches include the use of power control, opportunistic spectrum access, intra and inter-base station interference cancellation, adaptive fractional frequency reuse, spatial antenna techniques such as MIMO and SDMA, and adaptive beamforming, as well as recent innovations in decoding algorithms. The applicability, complexity, and performance gains possible with each of these techniques based on simulations and empirical measurements will be highlighted for specific cellular topologies relevant to LTE macro, pico, and femto deployments for both standalone and overlay networks.

748 citations


Journal ArticleDOI
TL;DR: In this article, a clustered base transceiver station (BTS) coordination strategy is proposed for a large cellular MIMO network, which includes full intra-cluster coordination to enhance the sum rate and limited inter-clusters coordination to reduce interference for the cluster edge users.
Abstract: A clustered base transceiver station (BTS) coordination strategy is proposed for a large cellular MIMO network, which includes full intra-cluster coordination-to enhance the sum rate-and limited inter-cluster coordination-to reduce interference for the cluster edge users. Multi-cell block diagonalization is used to coordinate the transmissions across multiple BTSs in the same cluster. To satisfy per-BTS power constraints, three combined precoder and power allocation algorithms are proposed with different performance and complexity tradeoffs. For inter-cluster coordination, the coordination area is chosen to balance fairness for edge users and the achievable sum rate. It is shown that a small cluster size (about 7 cells) is sufficient to obtain most of the sum rate benefits from clustered coordination while greatly relieving channel feedback requirement. Simulations show that the proposed coordination strategy efficiently reduces interference and provides a considerable sum rate gain for cellular MIMO networks.

592 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide nonspecialists working in the general area of digital communications with a comprehensive overview of this exciting research field, with focus on spatial multiplexing and spatial diversity techniques.
Abstract: The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last decade - both in academia and industry. Multiple antennas can be utilized in order to accomplish a multiplexing gain, a diversity gain, or an antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference ratio of wireless systems, respectively. With an enormous amount of yearly publications, the field of multiple-antenna systems, often called multiple-input multiple-output (MIMO) systems, has evolved rapidly. To date, there are numerous papers on the performance limits of MIMO systems, and an abundance of transmitter and receiver concepts has been proposed. The objective of this literature survey is to provide non-specialists working in the general area of digital communications with a comprehensive overview of this exciting research field. To this end, the last ten years of research efforts are recapitulated, with focus on spatial multiplexing and spatial diversity techniques. In particular, topics such as transmitter and receiver structures, channel coding, MIMO techniques for frequency-selective fading channels, diversity reception and space-time coding techniques, differential and non-coherent schemes, beamforming techniques and closed-loop MIMO techniques, cooperative diversity schemes, as well as practical aspects influencing the performance of multiple-antenna systems are addressed. Although the list of references is certainly not intended to be exhaustive, the publications cited will serve as a good starting point for further reading.

582 citations


Book
Farooq Khan1
01 Mar 2009
TL;DR: In this paper, the authors present a practical and valuable guide to the new technologies of the LTE standard and how they contribute to improvements in system performance with the help of an expert who was intimately involved in drafting the standard.
Abstract: Do you need to get up to speed quickly on LTE? Understand the new technologies of the LTE standard and how they contribute to improvements in system performance with this practical and valuable guide, written by an expert on LTE who was intimately involved in drafting the standard. In addition to a strong grounding in the technical details, you'll also get fascinating insights into why particular technologies were chosen in the development process. Core topics covered include: Network architecture and protocols OFDMA downlink access Low-PAPR SC-FDMA uplink access Transmit diversity and MIMO spatial multiplexing Channel structure and bandwidths Cell search, reference signals and random access Turbo coding with contention-free interleaver Scheduling, link adaptation, hybrid ARQ and power control Uplink and downlink physical control signaling Inter-cell interference mitigation techniques Single-frequency network (SFN) broadcast MIMO spatial channel model Evaluation methodology and system performance With extensive references, a useful discussion of technologies that were not included in the standard, and end-of-chapter summaries that emphasize all the key points, this book is an essential resource for practitioners in the mobile cellular communications industry and for graduate students studying advanced wireless communications.

514 citations


Proceedings ArticleDOI
19 Apr 2009
TL;DR: The algorithm is an alternating minimization over the precoding matrices at the transmitters and the interference subspaces at the receivers, and is proven to converge.
Abstract: Using interference alignment, it has been shown that the number of degrees of freedom in the interference channel scales linearly with the number of users. Unfortunately, closed-form solutions for interference alignment over constant-coefficient channels with more than 3 users are difficult to derive. This paper proposes an algorithm for interference alignment in the MIMO interference channel with an arbitrary number of users, antennas, or spatial streams. The algorithm is an alternating minimization over the precoding matrices at the transmitters and the interference subspaces at the receivers, and is proven to converge. Numerical results show how the algorithm is useful for simulation and can give insight into the limitations of interference alignment.

490 citations


Journal ArticleDOI
TL;DR: A new wideband multiple-input-multiple-output (MIMO) model for VTV channels based on extensive MIMO channel measurements performed at 5.2 GHz in highway and rural environments in Lund, Sweden is presented.
Abstract: Vehicle-to-vehicle (VTV) wireless communications have many envisioned applications in traffic safety and congestion avoidance, but the development of suitable communications systems and standards requires accurate models for the VTV propagation channel. In this paper, we present a new wideband multiple-input-multiple-output (MIMO) model for VTV channels based on extensive MIMO channel measurements performed at 5.2 GHz in highway and rural environments in Lund, Sweden. The measured channel characteristics, in particular the nonstationarity of the channel statistics, motivate the use of a geometry-based stochastic channel model (GSCM) instead of the classical tapped-delay line model. We introduce generalizations of the generic GSCM approach and techniques for parameterizing it from measurements and find it suitable to distinguish between diffuse and discrete scattering contributions. The time-variant contribution from discrete scatterers is tracked over time and delay using a high resolution algorithm, and our observations motivate their power being modeled as a combination of a (deterministic) distance decay and a slowly varying stochastic process. The paper gives a full parameterization of the channel model and supplies an implementation recipe for simulations. The model is verified by comparison of MIMO antenna correlations derived from the channel model to those obtained directly from the measurements.

414 citations


Journal ArticleDOI
TL;DR: In this paper, a tree-like structure on the ground plane is proposed for UWB MIMO/diversity antenna with a size of 35 × 40 mm2 operating at a frequency range of 3.110 GHz.
Abstract: A compact printed ultrawideband (UWB) multiple-input multiple-output (MIMO)/diversity antenna system (of two elements) with a size of 35 × 40 mm2 operating at a frequency range of 3.110.6 GHz is proposed. The wideband isolation can be achieved through a tree-like structure on the ground plane. The effectiveness of the tree-like structure is analyzed. Measured S-parameters show that the isolation is better than -16 dB (-20 dB in most of the band) across the UWB of 3.110.6 GHz. The radiation patterns, gain, and envelope correlation coefficient are also measured. The proposed antenna is suitable for some portable MIMO/diversity applications.

397 citations


Journal ArticleDOI
TL;DR: It is proved that for Schur-concave objective functions, the optimal source precoding matrix and relay amplifying matrix jointly diagonalize the source-relay-destination channel matrix and convert the multicarrier MIMO relay channel into parallel single-input single-output (SISO) relay channels.
Abstract: In this paper, we develop a unified framework for linear nonregenerative multicarrier multiple-input multiple-output (MIMO) relay communications in the absence of the direct source-destination link. This unified framework classifies most commonly used design objectives such as the minimal mean-square error and the maximal mutual information into two categories: Schur-concave and Schur-convex functions. We prove that for Schur-concave objective functions, the optimal source precoding matrix and relay amplifying matrix jointly diagonalize the source-relay-destination channel matrix and convert the multicarrier MIMO relay channel into parallel single-input single-output (SISO) relay channels. While for Schur-convex objectives, such joint diagonalization occurs after a specific rotation of the source precoding matrix. After the optimal structure of the source and relay matrices is determined, the linear nonregenerative relay design problem boils down to the issue of power loading among the resulting SISO relay channels. We show that this power loading problem can be efficiently solved by an alternating technique. Numerical examples demonstrate the effectiveness of the proposed framework.

Proceedings ArticleDOI
16 Aug 2009
TL;DR: Interference alignment and cancellation (IAC) is presented, a new approach for decoding concurrent sender-receiver pairs in MIMO networks that synthesizes two signal processing techniques, interference alignment and interference cancellation, showing that the combination applies to scenarios where neither interference alignment nor cancellation applies alone.
Abstract: The throughput of existing MIMO LANs is limited by the number of antennas on the AP. This paper shows how to overcome this limit. It presents interference alignment and cancellation (IAC), a new approach for decoding concurrent sender-receiver pairs in MIMO networks. IAC synthesizes two signal processing techniques, interference alignment and interference cancellation, showing that the combination applies to scenarios where neither interference alignment nor cancellation applies alone. We show analytically that IAC almost doubles the throughput of MIMO LANs. We also implement IAC in GNU-Radio, and experimentally demonstrate that for 2x2 MIMO LANs, IAC increases the average throughput by 1.5x on the downlink and 2x on the uplink.

Journal ArticleDOI
TL;DR: This paper introduces the complex LLL algorithm for direct application to reducing the basis of a complex lattice which is naturally defined by a complex-valued channel matrix, and derives an upper bound on proximity factors, which not only shows the full diversity of complex L LL reduction-aided detectors, but also characterize the performance gap relative to the lattice decoder.
Abstract: Recently, lattice-reduction-aided detectors have been proposed for multiinput multioutput (MIMO) systems to achieve performance with full diversity like the maximum likelihood receiver. However, these lattice-reduction-aided detectors are based on the traditional Lenstra-Lenstra-Lovasz (LLL) reduction algorithm that was originally introduced for reducing real lattice bases, in spite of the fact that the channel matrices are inherently complex-valued. In this paper, we introduce the complex LLL algorithm for direct application to reducing the basis of a complex lattice which is naturally defined by a complex-valued channel matrix. We derive an upper bound on proximity factors, which not only show the full diversity of complex LLL reduction-aided detectors, but also characterize the performance gap relative to the lattice decoder. Our analysis reveals that the complex LLL algorithm can reduce the complexity by nearly 50% compared to the traditional LLL algorithm, and this is confirmed by simulation. Interestingly, our simulation results suggest that the complex LLL algorithm has practically the same bit-error-rate performance as the traditional LLL algorithm, in spite of its lower complexity.

Journal ArticleDOI
TL;DR: New computationally efficient cyclic algorithms for MIMO radar waveform synthesis can be used for the design of unimodular MIMo sequences that have very low auto- and cross-correlation sidelobes in a specified lag interval, and of very long sequences that could hardly be handled by other algorithms previously suggested in the literature.
Abstract: A multiple-input multiple-output (MIMO) radar system that transmits orthogonal waveforms via its antennas can achieve a greatly increased virtual aperture compared with its phased-array counterpart. This increased virtual aperture enables many of the MIMO radar advantages, including enhanced parameter identifiability and improved resolution. Practical radar requirements such as unit peak-to-average power ratio and range compression dictate that we use MIMO radar waveforms that have constant modulus and good auto- and cross-correlation properties. We present in this paper new computationally efficient cyclic algorithms for MIMO radar waveform synthesis. These algorithms can be used for the design of unimodular MIMO sequences that have very low auto- and cross-correlation sidelobes in a specified lag interval, and of very long sequences that could hardly be handled by other algorithms previously suggested in the literature. A number of examples are provided to demonstrate the performances of the new waveform synthesis algorithms.

Journal ArticleDOI
TL;DR: It is shown that, for this channel, Gaussian signalling in the form of beam-forming is optimal, and no pre-processing of information is necessary.
Abstract: We find the secrecy capacity of the 2-2-1 Gaussian MIMO wiretap channel, which consists of a transmitter and a receiver with two antennas each, and an eavesdropper with a single antenna. We determine the secrecy capacity of this channel by proposing an achievable scheme and then developing a tight upper bound that meets the proposed achievable secrecy rate. We show that, for this channel, Gaussian signalling in the form of beam-forming is optimal, and no pre-processing of information is necessary.

Journal ArticleDOI
TL;DR: The pairwise error probabilities of single-input single- output (SISO) and multiple-input multiple-output (MIMO) FSO systems with intensity modulation and direct detection as generalized infinite power series with respect to the signal- to-noise ratio are expressed and an upper bound for the associated approximation error is provided.
Abstract: Atmospheric turbulence induced fading is one of the main impairments affecting free-space optics (FSO) communications. In recent years, Gamma-Gamma fading has become the dominant fading model for FSO links because of its excellent agreement with measurement data for a wide range of turbulence conditions. However, in contrast to RF communications, the analysis techniques for FSO are not well developed and prior work has mostly resorted to simulations and numerical integration for performance evaluation in Gamma-Gamma fading. In this paper, we express the pairwise error probabilities of single-input single- output (SISO) and multiple-input multiple-output (MIMO) FSO systems with intensity modulation and direct detection (IM/DD) as generalized infinite power series with respect to the signal- to-noise ratio. For numerical evaluation these power series are truncated to a finite number of terms and an upper bound for the associated approximation error is provided. The resulting finite power series enables fast and accurate numerical evaluation of the bit error rate of IM/DD FSO with on-off keying and pulse position modulation in SISO and MIMO Gamma-Gamma fading channels. Furthermore, we extend the well-known RF concepts of diversity and combining gain to FSO and Gamma-Gamma fading. In particular, we provide simple closed-form expressions for the diversity gain and the combining gain of MIMO FSO with repetition coding across lasers at the transmitter and equal gain combining or maximal ratio combining at the receiver.

Journal ArticleDOI
TL;DR: The compound wiretap channel is considered, which generalizes Wyner's wiretap model to allow the channels to the (legitimate) receiver and to the eavesdropper to take a number of possible states, and the secrecy capacity is established and an achievable is given for the general case.
Abstract: This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate) receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o. f.) are derived for the degraded case with one receiver. Schemes to achieve the s.d.o. f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO) compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o. f. is given for the general case.

Journal ArticleDOI
TL;DR: In this article, a block-by-block MIMO-OFDM system was proposed for underwater acoustic communications with low-density parity-check (LDPC) channel decoding.
Abstract: Multiple-input-multiple-output (MIMO) techniques have been actively pursued recently in underwater acoustic communications to increase the data rate over the bandwidth-limited channels. In this communication, we present a MIMO system design, where spatial multiplexing is applied with orthogonal-frequency-division-multiplexing (OFDM) signals. The proposed receiver works on a block-by-block basis, where null subcarriers are used for Doppler compensation, pilot subcarriers are used for channel estimation, and a MIMO detector consisting of a hybrid use of successive interference cancellation and soft minimum mean square error (MMSE) equalization is coupled with low-density parity-check (LDPC) channel decoding for iterative detection on each subcarrier. The proposed design has been tested using data recorded from three different experiments. A spectral efficiency of 3.5 b/s/Hz was approached in one experiment, while a data rate of 125.7 kb/s over a bandwidth of 62.5 kHz was achieved in another. These results suggest that MIMO-OFDM is an appealing solution for high-data-rate transmissions over underwater acoustic channels.

Journal ArticleDOI
TL;DR: Various MIMO technologies employed in LTE are introduced and a brief overview on the MIMo technologies currently discussed in the LTE-Advanced forum is provided.
Abstract: 3rd Generation Partnership Project (3GPP) has recently completed the specification of the Long Term Evolution (LTE) standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO) technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item "LTE-Advanced" to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R). In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

Journal ArticleDOI
TL;DR: This paper studies the robust beamforming design for a multi-antenna cognitive radio (CR) network, which transmits to multiple secondary users (SUs) and coexists with a primary network of multiple users, and proposes iterative algorithms for obtaining the robust optimal beamforming solution.
Abstract: This paper studies the robust beamforming design for a multi-antenna cognitive radio (CR) network, which transmits to multiple secondary users (SUs) and coexists with a primary network of multiple users. We aim to maximize the minimum of the received signal-to-interference-plus-noise ratios (SINRs) of the SUs, subject to the constraints of the total SU transmit power and the received interference power at the primary users (PUs) by optimizing the beamforming vectors at the SU transmitter based on imperfect channel state information (CSI). To model the uncertainty in CSI, we consider a bounded region for both cases of channel matrices and channel covariance matrices. As such, the optimization is done while satisfying the interference constraints for all possible CSI error realizations. We shall first derive equivalent conditions for the interference constraints and then convert the problems into the form of semi-definite programming (SDP) with the aid of rank relaxation, which leads to iterative algorithms for obtaining the robust optimal beamforming solution. Results demonstrate the achieved robustness and the performance gain over conventional approaches and that the proposed algorithms can obtain the exact robust optimal solution with high probability.

Journal ArticleDOI
TL;DR: This model is the first GBSM that has the ability to study the impact of the vehicular traffic density on channel characteristics and close agreement is achieved between the theoretical results and measured data, demonstrating the utility of the proposed model.
Abstract: In this paper, a generic and adaptive geometrybased stochastic model (GBSM) is proposed for non-isotropic multiple-input multiple-output (MIMO) mobile-to-mobile (M2M) Ricean fading channels. The proposed model employs a combined two-ring model and ellipse model, where the received signal is constructed as a sum of the line-of-sight, single-, and doublebounced rays with different energies. This makes the model sufficiently generic and adaptable to a variety of M2M scenarios (macro-, micro-, and pico-cells). More importantly, our model is the first GBSM that has the ability to study the impact of the vehicular traffic density on channel characteristics. From the proposed model, the space-time-frequency correlation function and the corresponding space-Doppler-frequency power spectral density (PSD) of any two sub-channels are derived for a non-isotropic scattering environment. Based on the detailed investigation of correlations and PSDs, some interesting observations and useful conclusions are obtained. These observations and conclusions can be considered as a guidance for setting important parameters of our model appropriately and building up more purposeful measurement campaigns in the future. Finally, close agreement is achieved between the theoretical results and measured data, demonstrating the utility of the proposed model.

Proceedings ArticleDOI
14 Jun 2009
TL;DR: A relationship between weighted sum-rate and weighted MMSE in the MIMO-BC is established and two low complexity algorithms for finding a local weighted Sum-rate optimum based on alternating optimization are proposed.
Abstract: This paper studies linear transmit filter design for Weighted Sum-Rate (WSR) maximization in the Multiple Input Multiple Output Broadcast Channel (MIMO-BC). The problem of finding the optimal transmit filter is non-convex and intractable to solve using low complexity methods. Motivated by recent results highlighting the relationship between mutual information and Minimum Mean Square Error (MMSE), this paper establishes a relationship between weighted sum-rate and weighted MMSE in the MIMO-BC. The relationship is used to propose a low complexity algorithm for finding a local weighted sum-rate optimum based on alternating optimization. Numerical results studying sum-rate show that the proposed algorithm achieves high performance with few iterations.

Journal ArticleDOI
TL;DR: A novel iterative algorithm is proposed to optimize the waveforms and receiving filters in the MIMO radar such that the detection performance can be maximized and these algorithms have better SINR performance than existing design methods.
Abstract: The concept of multiple-input multiple-output (MIMO) radar allows each transmitting antenna element to transmit an arbitrary waveform. This provides extra degrees of freedom compared to the traditional transmit beamforming approach. It has been shown in the recent literature that MIMO radar systems have many advantages. In this paper, we consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. Numerical results show that the proposed methods have better SINR performance than existing design methods.

Journal ArticleDOI
TL;DR: A generalized minimum mean-squared error (MMSE) channel inversion algorithm for users with multiple antennas to overcome the drawbacks of the BD for multiuser MIMO systems and shows that the proposed algorithm is robust to channel estimation errors.
Abstract: Block diagonalization (BD) is a well-known precoding method in multiuser multi-input multi-output (MIMO) broadcast channels. This scheme can be considered as a extension of the zero-forcing (ZF) channel inversion to the case where each receiver is equipped with multiple antennas. One of the limitation of the BD is that the sum rate does not grow linearly with the number of users and transmit antennas at low and medium signal-to-noise ratio regime, since the complete suppression of multi-user interference is achieved at the expense of noise enhancement. Also it performs poorly under imperfect channel state information. In this paper, we propose a generalized minimum mean-squared error (MMSE) channel inversion algorithm for users with multiple antennas to overcome the drawbacks of the BD for multiuser MIMO systems. We first introduce a generalized ZF channel inversion algorithm as a new approach of the conventional BD. Applying this idea to the MMSE channel inversion for identifying orthonormal basis vectors of the precoder, and employing the MMSE criterion for finding its combining matrix, the proposed scheme increases the signal-to-interference-plus-noise ratio at each user's receiver. Simulation results confirm that the proposed scheme exhibits a linear growth of the sum rate, as opposed to the BD scheme. For block fading channels with four transmit antennas, the proposed scheme provides a 3 dB gain over the conventional BD scheme at 1% frame error rate. Also, we present a modified precoding method for systems with channel estimation errors and show that the proposed algorithm is robust to channel estimation errors.

Journal ArticleDOI
TL;DR: The goal of this paper is to provide a complete characterization of the MIMO game for arbitrary channel matrices, in terms of conditions guaranteeing both the uniqueness of the Nash equilibrium and the convergence of asynchronous distributed iterative waterfilling algorithms.
Abstract: This paper considers the noncooperative maximization of mutual information in the vector Gaussian interference channel in a fully distributed fashion via game theory. This problem has been widely studied in a number of works during the past decade for frequency-selective channels, and recently for the more general multiple-input multiple-output (MIMO) case, for which the state-of-the art results are valid only for nonsingular square channel matrices. Surprisingly, these results do not hold true when the channel matrices are rectangular and/or rank deficient matrices. The goal of this paper is to provide a complete characterization of the MIMO game for arbitrary channel matrices, in terms of conditions guaranteeing both the uniqueness of the Nash equilibrium and the convergence of asynchronous distributed iterative waterfilling algorithms. Our analysis hinges on new technical intermediate results, such as a new expression for the MIMO waterfilling projection valid (also) for singular matrices, a mean-value theorem for complex matrix-valued functions, and a general contraction theorem for the multiuser MIMO watefilling mapping valid for arbitrary channel matrices. The quite surprising result is that uniqueness/convergence conditions in the case of tall (possibly singular) channel matrices are more restrictive than those required in the case of (full rank) fat channel matrices. We also propose a modified game and algorithm with milder conditions for the uniqueness of the equilibrium and convergence, and virtually the same performance (in terms of Nash equilibria) of the original game.

01 Jan 2009
TL;DR: The aim of this paper is to present some first results on spatial multiplexing, STC, and beamforming to illustrate the potential of UWB-MIMO.
Abstract: Ultra-wide-band (UWB) technology combined with multiple transmit and receive antennas (MIMO) is a viable way to achieve data rates of more than 1 Gb/s for wireless communications. UWB is typically applied to short-range and therefore mainly indoor communications in environments characterized usually by dense multipath propagation. For this type of environment, MIMO systems allow for a substantial increase of spectral efficiency by exploiting the inherent array gain and spatial multiplexing gain of the systems. In this paper, we provide a brief overview for UWB-MIMO wireless technol- ogy. The overview covers channel capacity, space-time coding (STC), and beamforming. It is shown that the spectral efficiency is increased logarithmically and linearly, respectively, for single transmit and multiple receive antennas (SIMO) and MIMO systems. For multiple transmit and single receive antenna (MISO) systems, a threshold for the data transmission rate exists such that the spatial multiplexing gain can be obtained if the data rate is lower than this threshold, but it is not beneficial to deploy multiple transmit antennas if the required data rate is higher than the threshold. Two STC schemes for UWB-MIMO are briefly discussed, and their performance comparison is presented. A discussion about antenna selection is also presented, and the performance comparison between antenna selection and equal gain com- biner is provided showing the diversity gain for some scenarios. For the beamforming, it is shown that the optimal beamformer is obtained if all the weighting filters in each antenna branch are identical. About the optimal beamformer, it is found that the amplitude of the side lobe is independent of the ray incidence angle, and the amplitude of the main lobe is increased by a fold of the element number in the array. Three kinds of beam patterns are defined, and the beamwidth of the main lobe is given. Experimental results based on an offline testbed are provided to verify some analytical results pre- sented in this paper. Since UWB-MIMO is still in its research infancy, the aim of this paper is to present some first results on spatial multiplexing, STC, and beamforming to illustrate the potential of UWB-MIMO.

Journal ArticleDOI
TL;DR: This paper considers robust transmit strategies, against the imperfectness of the channel state information at the transmitter (CSIT), for multi-input multi-output (MIMO) communication systems, and finds that the optimal transmit directions are just the right singular vectors of the nominal channel under some mild conditions.
Abstract: In this paper, we consider robust transmit strategies, against the imperfectness of the channel state information at the transmitter (CSIT), for multi-input multi-output (MIMO) communication systems. Following a worst-case deterministic model, the actual channel is assumed to be inside an ellipsoid centered at a nominal channel. The objective is to maximize the worst-case received signal-to-noise ratio (SNR), or to minimize the worst-case Chernoff bound of the error probability, thus leading to a maximin problem. Moreover, we also consider the QoS problem, as a complement of the maximin design, which minimizes the transmit power consumption and meanwhile keeps the received SNR above a given threshold for any channel realization in the ellipsoid. It is shown that, for a general class of power constraints, both the maximin and QoS problems can be equivalently transformed into convex problems, or even further into semidefinite programs (SDPs), thus efficiently solvable by the numerical methods. The most interesting result is that the optimal transmit directions, i.e., the eigenvectors of the transmit covariance, are just the right singular vectors of the nominal channel under some mild conditions. This result leads to a channel-diagonalizing structure, as in the cases of perfect CSIT and statistical CSIT with mean or covariance feedback, and reduces the complicated matrix-valued problem to a scalar power allocation problem. Then we provide the closed-form solution to the resulting power allocation problem.

Journal ArticleDOI
TL;DR: This work derives the maximum number of simultaneously transmitting multiple antenna femtocells meeting a per-tier outage probability constraint and proposes a decentralized carrier-sensing approach to regulate femtocell transmission powers based on their location.
Abstract: In two-tier networks comprising a conventional cellular network overlaid with shorter range hotspots (e.g. femtocells, distributed antennas, or wired relays) with universal frequency reuse, the near-far effect from cross-tier interference creates dead spots where reliable coverage cannot be guaranteed to users in either tier. Equipping the macrocell and femtocells with multiple antennas enhances robustness against the near-far problem. This work derives the maximum number of simultaneously transmitting multiple antenna femtocells meeting a per-tier outage probability constraint. Coverage dead zones are presented wherein cross-tier interference bottlenecks cellular and femtocell coverage. Two operating regimes are shown namely 1) a cellular-limited regime in which femtocell users experience unacceptable cross-tier interference and 2) a hotspot-limited regime wherein both femtocell users and cellular users are limited by hotspot interference. Our analysis accounts for the per-tier transmit powers, the number of transmit antennas (single antenna transmission being a special case) and terrestrial propagation such as the Rayleigh fading and the path loss exponents. Single-user (SU) multiple antenna transmission at each tier is shown to provide significantly superior coverage and spatial reuse relative to multiuser (MU) transmission. We propose a decentralized carrier-sensing approach to regulate femtocell transmission powers based on their location. Considering a worst-case cell-edge location, simulations using typical path loss scenarios show that our interference management strategy provides reliable cellular coverage with about 60 femtocells per cell-site.

Journal ArticleDOI
TL;DR: The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.
Abstract: This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.

Journal ArticleDOI
TL;DR: Network MIMO coordination is found to increase throughput by a factor of 1.8 with intra-site coordination among antennas belonging to the same cell site, and intra- site coordination performs almost as well as a highly sectorized system with 12 sectors per site.
Abstract: Single-user, multiuser, and network MIMO performance is evaluated for downlink cellular networks with 12 antennas per site, sectorization, universal frequency reuse, scheduled packet-data, and a dense population of stationary users. Compared to a single-user MIMO baseline system with 3 sectors per site, network MIMO coordination is found to increase throughput by a factor of 1.8 with intra-site coordination among antennas belonging to the same cell site. Intra-site coordination performs almost as well as a highly sectorized system with 12 sectors per site. Increasing the coordination cluster size from 1 to 7 sites increases the throughput gain factor to 2.5.