scispace - formally typeset
Search or ask a question

Showing papers on "Neuroactive steroid published in 2006"


Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: Two discrete binding sites in the GABAA receptor’s transmembrane domains are identified that mediate the potentiating and direct activation effects of neurosteroids and provide a unique opportunity for the development of new therapeutic, neurosteroid-based ligands and transgenic disease models of Neurosteroid dysfunction.
Abstract: Inhibitory neurotransmission mediated by GABA(A) receptors can be modulated by the endogenous neurosteroids, allopregnanolone and tetrahydro-deoxycorticosterone(1). Neurosteroids are synthesized de novo in the brain during stress(2), pregnancy(3) and after ethanol consumption(4), and disrupted steroid regulation of GABAergic transmission is strongly implicated in several debilitating conditions such as panic disorder, major depression, schizophrenia, alcohol dependence and catamenial epilepsy(3,5-8). Determining how neurosteroids interact with the GABA(A) receptor is a prerequisite for understanding their physiological and pathophysiological roles in the brain. Here we identify two discrete binding sites in the receptor's transmembrane domains that mediate the potentiating and direct activation effects of neurosteroids. They potentiate GABA responses from a cavity formed by the alpha-subunit transmembrane domains, whereas direct receptor activation is initiated by interfacial residues between alpha and beta subunits and is enhanced by steroid binding to the potentiation site. Thus, significant receptor activation by neurosteroids relies on occupancy of both the activation and potentiation sites. These sites are highly conserved throughout the GABA(A) receptor family, and their identification provides a unique opportunity for the development of new therapeutic, neurosteroid-based ligands and transgenic disease models of neurosteroid dysfunction.

673 citations


Journal ArticleDOI
TL;DR: The hypothesis that neuroactive steroids might represent a new therapeutic strategy for peripheral neuropathy is proposed.
Abstract: It is now well known that peripheral nerves are a target for the action of neuroactive steroids. This review summarizes observations obtained so far, indicating that through the interaction with classical and nonclassical steroid receptors, neuroactive steroids (e.g., progesterone, testosterone and their derivatives, estrogens, etc.) are able to influence several parameters of the peripheral nervous system, particularly its glial compartment (i.e., Schwann cells). Interestingly, some of these neuroactive steroids might be considered as promising neuroprotective agents. They are able to counteract neurodegenerative events of rat peripheral nerves occurring after experimental physical trauma, during the aging process, or in hereditary demyelinating diseases. On this basis, the hypothesis that neuroactive steroids might represent a new therapeutic strategy for peripheral neuropathy is proposed.

466 citations


Journal ArticleDOI
TL;DR: It is demonstrated that 5α-R type I and 3α-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus, and data suggest that ALLO and THDOC modulate GABA action at GABAA receptors, either with an autocrine or a paracrine mechanism or by reaching GabAA receptor intracellular sites through lateral membrane diffusion.
Abstract: Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABAA receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5α-reductase (5α-R) type I and 3α-hydroxysteroid dehydrogenase (3α-HSD). This study evaluates 5α-R type I and 3α-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100β immunohistochemistry. We demonstrate that 5α-R type I and 3α-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5α-R type I nor 3α-HSD mRNAs are expressed in S100β- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5α-R type I and 3α-HSD in cortical and hippocampal GABAergic interneurons. However, 5α-R type I and 3α-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABAA receptors, either with an autocrine or a paracrine mechanism or by reaching GABAA receptor intracellular sites through lateral membrane diffusion.

341 citations


Journal ArticleDOI
TL;DR: Changes in peripheral-type benzodiazepine receptor and neurosteroid levels are part of the phenotype seen in neuropathology and neurological disorders and offer potential targets for new therapies.

229 citations


Journal ArticleDOI
TL;DR: It could be inferred that the increase of brain Allo content elicited by fluoxetine and norfluxetine, rather than the inhibition selective of 5-HT reuptake, may be operative in the fluoxettine-induced remission of the behavioral abnormalities associated with mood disorders.
Abstract: It has recently become more clearly understood that in human brain pathophysiology, neurosteroids play a role in anxiety disorders, premenstrual syndrome, postpartum depression, posttraumatic stress disorder, and depression. In the treatment of major depression, recent clinical studies indicate that the pharmacological profiles of fluoxetine and fluvoxamine are correlated with the ability of these drugs to increase the brain and cerebrospinal fluid content of allopregnanolone (Allo), a potent positive allosteric modulator of gamma-aminobutyric acid (GABA) action at GABAA receptors. Thus, the neurosteroid-induced positive allosteric modulation of GABA action at GABAA receptors is facilitated by fluoxetine or its congeners (i.e., paroxetine, fluvoxamine, sertraline), which may not block 5-HT reuptake at the doses currently prescribed in the clinic. However, these doses are effective in the treatment of premenstrual dysphoria, anxiety, and depression. In socially isolated mice, we tested the hypothesis that fluoxetine, norfluoxetine, and other specific serotonin reuptake inhibitor (SSRI) congeners stereoselectively upregulate neurosteroid content at doses insufficient to inhibit 5-HT reuptake; although they potentiate pentobarbital-induced sedation and exert antiaggressive action. Very importantly, the inhibition of 5-HT reuptake lacks stereospecificity and requires fluoxetine and norfluoxetine doses that are 50-fold greater than those required to increase brain Allo content, potentiate the action of pentobarbital, or antagonize isolation-induced aggression. Based on these findings, it could be inferred that the increase of brain Allo content elicited by fluoxetine and norfluoxetine, rather than the inhibition selective of 5-HT reuptake, may be operative in the fluoxetine-induced remission of the behavioral abnormalities associated with mood disorders. Therefore, the term "SSRI" may be misleading in defining the pharmacological profile of fluoxetine and its congeners. To this extent, the term "selective brain steroidogenic stimulants" (SBSSs) could be proposed.

225 citations


Journal ArticleDOI
TL;DR: The data demonstrating that the sigma1 receptor binds neurosteroids in physiological conditions will be reviewed and the physiological relevance of this interaction will be analyzed and the impact on physiopathological outcomes in memory and drug addiction will be illustrated.

167 citations


Journal ArticleDOI
TL;DR: The relative contribution these mechanisms play in defining the interaction of neurosteroids with synaptic and extra-synaptic GABA(A) receptors are evaluated to suggest that these endogenous modulators may refine the function of the brain's major inhibitory receptor and thus, play an important physiological and pathophysiological role.

162 citations


Journal ArticleDOI
TL;DR: Investigating neuroactive steroid levels in post-mortem brain tissue from subjects with schizophrenia, bipolar disorder, nonpsychotic depression, and control subjects to determine if neuroactive steroids are altered in these disorders found them to be candidate modulators of the pathophysiology of schizophrenia and bipolar disorder and relevant to the treatment of these disorders.

159 citations


Journal ArticleDOI
TL;DR: The 3beta-hydroxypregnane steroid UC1011 can inhibit allopregnanolone-induced learning impairment and chloride uptake potentiation in vitro and in vivo, which can at least partly explain the opposite effects on mood of those hormones.

151 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (CYP11A1), and 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase, the first three factors in the steroidogenesis pathway, are expressed in both developing and adult zebra finch brain.
Abstract: Steroids exert powerful effects on the brains and behavior of many species, but measures and manipulations of endocrine physiology in songbirds often reveal unexplained connections between steroids and the brain. The zebra finch song system, a sensorimotor neural circuit sensitive to steroids throughout life, organizes and functions largely in apparent independence from gonadally derived steroids. We tested the hypothesis that the zebra finch brain has the capacity for de novo steroidogenesis and that neurally synthesized steroids, neurosteroids, may impact the song system. Using multiple techniques, we demonstrate that the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (CYP11A1), and 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase, the first three factors in the steroidogenic pathway, are expressed in both developing and adult zebra finch brain. Detailed expression mapping at posthatch d 20 (P20) and adult reveals widespread area-specific expression and coexpression patterns for steroidogenic acute regulatory protein, CYP11A1, and 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase, which suggest neurosteroids may modulate multiple brain functions, including sensory and motor systems. Notably, whereas expression of other steroidogenic genes such as aromatase has been essentially absent from the song system, each of the major song nuclei express at least a subset of steroidogenic genes described here, establishing the song system as a potential steroidogenic circuit.

144 citations


Journal ArticleDOI
TL;DR: Subjects with AD demonstrate significant reductions in PFC allopregnanolone levels, a finding that may be relevant to neuropathological disease stage severity, and neurosteroids may have utility as candidate biomarkers in AD.

Journal ArticleDOI
TL;DR: Finasteride is the first 5α-reductase inhibitor that received clinical approval for the treatment of human benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern hair loss).
Abstract: Finasteride is the first 5α-reductase inhibitor that received clinical approval for the treatment of human benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern hair loss). These clinical applications are based on the ability of finasteride to inhibit the Type II isoform of the 5α-reductase enzyme, which is the predominant form in human prostate and hair follicles, and the concomitant reduction of testosterone to dihydrotestosterone (DHT). In addition to catalyzing the rate-limiting step in the reduction of testosterone, both isoforms of the 5α-reductase enzyme are responsible for the reduction of progesterone and deoxycorticosterone to dihydroprogesterone (DHP) and dihydrodeoxycorticosterone (DHDOC), respectively. Recent preclinical data indicate that the subsequent 3α-reduction of DHT, DHP and DHDOC produces steroid metabolites with rapid non-genomic effects on brain function and behavior, primarily via an enhancement of γ-aminobutyric acid (GABA)ergic inhibitory neurotransmission. Consistent with their ability to enhance the action of GABA at GABAA receptors, these steroid derivatives (termed neuroactive steroids) possess anticonvulsant, antidepressant and anxiolytic effects in addition to altering aspects of sexual- and alcohol-related behaviors. Thus, finasteride, which inhibits both isoforms of 5α-reductase in rodents, has been used as a tool to manipulate neuroactive steroid levels and determine the impact on behavior. Results of some preclinical studies and clinical observations with finasteride are described in this review article. The data suggest that endogenous neuroactive steroid levels may be inversely related to symptoms of premenstrual and postpartum dysphoric disorder, catamenial epilepsy, depression, and alcohol withdrawal.

Journal ArticleDOI
TL;DR: The state of the art concerning Y(1)R function and gene expression is reviewed, including the personal contribution to many of the subjects mentioned above.

Journal ArticleDOI
TL;DR: The present review details the evidences showing that the sigma(1) receptor is a target for neurosteroids in physiological conditions and the impact on physiopathological outcomes in neuroprotection is illustrated.
Abstract: Steroids from peripheral sources or synthesized in the brain, i.e. neurosteroids, exert rapid modulations of neurotransmitter responses through specific interactions with membrane receptors, mainly the gamma-aminobutyric acid type A (GABA(A)) receptor and N-methyl-d-aspartate (NMDA) type of glutamate receptor. Progesterone and 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) act as inhibitory steroids while pregnenolone sulfate or dehydroepiandrosterone sulfate act as excitatory steroids. Some steroids also interact with an atypical protein, the sigma(1) (sigma(1)) receptor. This receptor has been cloned in several species and is centrally expressed in neurons and oligodendrocytes. Activation of the sigma(1) receptor modulates cellular Ca(2+) mobilization, particularly from endoplasmic reticulum pools, and contributes to the formation of lipid droplets, translocating towards the plasma membrane and contributing to the recomposition of lipid microdomains. The present review details the evidences showing that the sigma(1) receptor is a target for neurosteroids in physiological conditions. Analysis of the sigma(1) protein sequence confirmed homologies with the ERG2/emopamil binding protein family but also with the steroidogenic enzymes isopentenyl diphosphate isomerase and 17beta-estradiol dehydrogenase. Biochemical and physiological arguments for an interaction of neuro(active)steroids with the sigma(1) receptor are analyzed and the impact on physiopathological outcomes in neuroprotection is illustrated.

Journal ArticleDOI
TL;DR: Clinical evidence is merely suggestive of a role of neuroactive steroids in the mechanism of action of clinically effective antidepressant therapy, and additional clinical studies evaluating the impact of successful pharmacological and nonpharmacological antidepressant therapies on changes in neuroactive steroid levels in both plasma and CSF samples of the same patients are necessary.
Abstract: The naturally occurring 3α-reduced neurosteroids allopregnanolone and its isomer pregnanolone are among the most potent positive allosteric modulators of γ-aminobutyric acid type A receptors. They play a critical role in the maintenance of physiological GABAergic tone and display a broad spectrum of neuropsychopharmacological properties. We have reviewed existing evidence implicating the relevance of endogenous 3α-reduced neuroactive steroids to depression and to the mechanism of action of antidepressants. A wide range of preclinical and clinical evidence suggesting the antidepressant potential of 3α-reduced neuroactive steroids and a possible involvement of a deficiency and a disequilibrium of neuroactive steroid levels in pathomechanisms underlying the etiology of major depressive disorder have emerged in recent years. Antidepressants elevate 3α-reduced neurosteroid levels in rodent brain, and clinically effective antidepressant pharmacotherapy is associated with normalization of plasma and cerebrospinal fluid (CSF) concentrations of endogenous neuroactive steroids in depressed patients, unveiling a possible contribution of neuroactive steroids to the mechanism of action of antidepressants. In contrast, recent studies using nonpharmacological antidepressant therapy suggest that changes in plasma neuroactive steroid levels may not be a general mandatory component of clinically effective antidepressant treatment per se, but may reflect distinct properties of pharmacotherapy only. While preclinical studies offer convincing evidence in support of an antidepressant-like effect of 3α-reduced neuroactive steroids in rodent models of depression, current clinical investigations are inconclusive of an involvement of neuroactive steroid deficiency in the pathophysiology of depression. Moreover, clinical evidence is merely suggestive of a role of neuroactive steroids in the mechanism of action of clinically effective antidepressant therapy. Additional clinical studies evaluating the impact of successful pharmacological and nonpharmacological antidepressant therapies on changes in neuroactive steroid levels in both plasma and CSF samples of the same patients are necessary in order to more accurately address the relevance of 3α-reduced neuroactive steroids to major depressive disorder. Finally, proof-of-concept studies with drugs that are known to selectively elevate brain neurosteroid levels may offer a direct assessment of an involvement of neurosteroids in the treatment of depressive symptomatology.

Journal ArticleDOI
TL;DR: Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, testosterone, dihydrotestosterone and 17beta-estradiol, which is particularly important because estradiol rapidly modulates neuronal synaptic transmission such as long-term potentiation via synaptic estrogen receptors.

Journal ArticleDOI
TL;DR: It is suggested that THP withdrawal in the mouse may serve as a rodent model of PMDD and produce anxiogenic effects, in contrast to its expected anxiolytic effects.
Abstract: Rationale 3α-OH-5α[β]-pregnan-20-one (THP) is a positive modulator of the GABAA receptor (GABAR), which underlies its reported anxiolytic effect. However, there are conditions such as premenstrual dysphoric disorder (PMDD) where increases in THP levels can be associated with adverse mood.

Journal ArticleDOI
TL;DR: It is demonstrated that estrogens were locally synthesized in the adult hippocampal neurons and that synaptic ERα can drive rapid modulation of synaptic plasticity by endogenous estradiol.
Abstract: In neuroendocrinology, it is believed that steroid hormones are synthesized in the gonads and/or adrenal glands, and reach the brain via the blood circulation. In contrast to this view, we are in prog

Journal ArticleDOI
TL;DR: The discovery that neuroactive steroids exert rapid, direct effects upon the function of both excitatory and inhibitory neurotransmitter receptors has raised the possibility that endogenous neurosteroids may play a regulatory role in synaptic transmission by modulating the balance between excitatories and inhibitors.
Abstract: Central nervous system function is critically dependent upon an exquisitely tuned balance between excitatory synaptic transmission, mediated primarily by glutamate, and inhibitory synaptic transmission, mediated primarily by GABA. Modulation of either excitation or inhibition would be expected to result in altered functionality of finely tuned synaptic pathways and global neural systems, leading to altered nervous system function. Administration of positive or negative modulators of ligand-gated ion channels has been used extensively and successfully in CNS therapeutics, particularly for the induction of sedation and treatment of anxiety, seizures, insomnia, and pain. Excessive activation of excitatory glutamate receptors, such as in cerebral ischemia, can result in neuronal damage via excitotoxic mechanisms. The discovery that neuroactive steroids exert rapid, direct effects upon the function of both excitatory and inhibitory neurotransmitter receptors has raised the possibility that endogenous neurosteroids may play a regulatory role in synaptic transmission by modulating the balance between excitatory and inhibitory neurotransmission. The sites to which neuroactive steroids bind may also serve as targets for the discovery of therapeutic neuromodulators.

Journal ArticleDOI
TL;DR: It has been suggested that neurosteroids may become potential targets for pharmacological intervention in the future with further neurosteroid investigation contributing to a more comprehensive understanding of human behavior and psychopathology.

Journal ArticleDOI
TL;DR: DHEA, DHEAS, and Allo protect chromaffin cells and the sympathoadrenal PC12 cells against serum deprivation–induced apoptosis, and suggest that neurosteroids may act as endogenous neuroprotective factors.
Abstract: The neuroactive steroids dehydroepiandrosterone (DHEA), its sulfate ester DHEAS, and allopregnanolone (Allo) are produced in the adrenals and the brain. Their production rate and levels in serum, brain, and adrenals decrease gradually with advancing age. The decline of their levels was associated with age-related neuronal dysfunction and degeneration, most probably because these steroids protect central nervous system (CNS) neurons against noxious agents. Indeed, DHEA(S) protects rat hippocampal neurons against NMDA-induced excitotoxicity, whereas Allo ameliorates NMDA-induced excitotoxicity in human neurons. These steroids exert also a protective role on the sympathetic nervous system. Indeed, DHEA, DHEAS, and Allo protect chromaffin cells and the sympathoadrenal PC12 cells (an established model for the study of neuronal cell apoptosis and survival) against serum deprivation-induced apoptosis. Their effects are time- and dose-dependent with EC(50) 1.8, 1.1, and 1.5 nM, respectively. The prosurvival effect of DHEA(S) appears to be NMDA-, GABA(A)- sigma1-, or estrogen receptor-independent, and is mediated by G-protein-coupled-specific membrane binding sites. It involves the antiapoptotic Bcl-2 proteins, and the activation of prosurvival transcription factors CREB and NF-kappaB, upstream effectors of the antiapoptotic Bcl-2 protein expression, as well as prosurvival kinase PKCalpha/beta, a posttranslational activator of Bcl-2. Furthermore, they directly stimulate biosynthesis and release of neuroprotective catecholamines, exerting a direct transcriptional effect on tyrosine hydroxylase, and regulating actin depolymerization and submembrane actin filament disassembly, a fast-response cellular system regulating trafficking of catecholamine vesicles. These findings suggest that neurosteroids may act as endogenous neuroprotective factors. The decline of neurosteroid levels during aging may leave the brain unprotected against neurotoxic challenges.

Journal ArticleDOI
TL;DR: Chronic ethanol exposure elicits changes in the subunit composition of GABAARs, which, in turn, likely contribute to changes in receptor function associated with the altered pharmacological and behavioral sensitivity characteristic of ethanol tolerance and dependence.
Abstract: Changes in the expression of type A receptors for γ-aminobutyric acid (GABA) represent one of the mechanisms implicated in the development of tolerance to and dependence on ethanol. The impact of such changes on the function and pharmacological sensitivity of GABAA receptors (GABAARs) has remained unclear, however. Certain behavioral and electrophysiological actions of ethanol are mediated by an increase in the concentration of neuroactive steroids in the brain that results from stimulation of the hypothalamic–pituitary–adrenal (HPA) axis. Such steroids include potent modulators of GABAAR function. We have investigated the effect of ethanol exposure and withdrawal on subunit expression and receptor function evaluated by subunit selective compounds, as well as the effects of short-term exposure to ethanol on both neurosteroid synthesis and GABAAR function, in isolated neurons and brain tissue. Chronic treatment with and subsequent withdrawal from ethanol alter the expression of genes for specific GABAAR subunits in cultured rat neurons, and these changes are associated with alterations in receptor function and pharmacological sensitivity to neurosteroids, zaleplon, and flumazenil. Acute ethanol exposure increases the amount of 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) in hippocampal slices by a local action independent of the activity of the HPA axis. This effect of ethanol was associated with an increased amplitude of GABAAR-mediated miniature inhibitory postsynaptic currents recorded from CA1 pyramidal neurons in such slices. Chronic ethanol exposure elicits changes in the subunit composition of GABAARs, which, in turn, likely contribute to changes in receptor function associated with the altered pharmacological and behavioral sensitivity characteristic of ethanol tolerance and dependence. Ethanol may also modulate GABAAR function by increasing the de novo synthesis of neurosteroids in the brain in a manner independent of the HPA axis. This latter mechanism may play an important role in the central effects of ethanol.

Journal ArticleDOI
TL;DR: It is reported that responses mediated by recombinant rat N-methyl-D-aspartate receptors expressed in human embryonic kidney HEK293 cells are differentially affected by naturally occurring neurosteroid pregnenolone sulfate, and the structure of the extracellular loop between the third and fourth transmembrane domains of the NR2 subunit is critical for both the potentiating and inhibitory effects of pregnenolate sulfate.

Journal ArticleDOI
TL;DR: Radioimmunoassays showed an increase of PREG and 3α/5α-THP concentrations in neuropathic rat DH, which might be involved in endogenous mechanisms triggered by neuropathic rats to cope with the chronic pain state.
Abstract: The spinal cord (SC) is a biosynthetic center for neurosteroids, including pregnenolone (PREG), progesterone (PROG), and 3alpha/5alpha-tetrahydroprogesterone (3alpha/5alpha-THP). In particular, an active form of cytochrome P450 sidechain cleavage (P450scc) has been localized in sensory networks of the rat SC dorsal horn (DH). P450scc is the key enzyme catalyzing the conversion of cholesterol (CHOL) into PREG, the rate-limiting step in the biosynthesis of all classes of steroids. To determine whether neurosteroidogenesis might be involved in the pivotal role played by the DH in nociception, effects of neurogenic pain provoked by sciatic nerve ligature were investigated on P450scc expression, cellular distribution, and activity in the SC. P450scc mRNA concentration was threefold higher in the DH of neuropathic rats than in controls. The nerve ligature also increased the density of P450sccpositive neuronal perykarya and fibers in the ipsilateral DH. Incubation of spinal tissue homogenates with [3H]CHOL revealed that the amount of newly synthesized [3H]PREG from [3H]CHOLwas 80% higher in the DH of neuropathic rats. Radioimmunoassays showed an increase of PREG and 3alpha/5alpha-THP concentrations in neuropathic rat DH. The upregulation of PREG and 3alpha/5alpha-THP biosynthesis might be involved in endogenous mechanisms triggered by neuropathic rats to cope with the chronic pain state. 3alpha/5alpha-THP formation from PREG can also generate PROG, which decreases sensitivity to pain and protects nerve cells against degeneration. Because apoptotic cell death has been demonstrated in the DH during neuropathic pain, activation of neurosteroidogenesis in spinal tissues might also be correlated to the neuroprotective role of steroids in the SC.

Journal Article
TL;DR: This paper focuses on neuroprotection afforded by neurosteroids and its potential use in the treatment of various neuropathologies such as: age-dependent dementia, stroke, epilepsy, spinal cord injury, Alzheimer's disease, Parkinson's disease and Niemann-Pick type C disease.

Journal ArticleDOI
TL;DR: It is proposed that it would be more fruitful to focus on relationships between NAS and symptoms of psychiatric disorders, rather than with typologically defined disorders.
Abstract: Neurosteroids (NS) are steroids synthesized by the brain. Neuroactive steroids (NAS) refers to steroids that, independent of their origin, are capable of modifying neural activities. NAS bind and modulate different types of membrane receptors. The gamma amino butyric acid (GABA) and sigma receptor complexes have been the most extensively studied. Oxidized ring A reduced pregnanes, tetrahydroprogesterone (THP), and tetrahydrodeoxycorticosterone (THDOC) bind to the progesterone intracellular receptor (PR), and in this way can also regulate gene expression. Animal experimentation showed that salient symptoms of depression, viz., anxiety, sleep disturbances, and memory and sexual dysfunctions, are modulated by NAS. In turn, psychotropic drugs modulate NS and NAS levels. NS levels as well as NAS plasma concentrations change in patients with depression syndromes, the levels return to normal baseline with recovery, but normalization is not necessary for successful therapy. Results from current studies on the evolution of nervous systems, including evolutionary developmental biology as well as anatomical and physiological findings, almost preclude a categorical classification of the psychiatric ailments the human brain succumbs to. The persistence in maintaining such essentialist classifications may help to explain why up to now the search for biological markers in psychiatry has been an unrewarding effort. It is proposed that it would be more fruitful to focus on relationships between NAS and symptoms of psychiatric disorders, rather than with typologically defined disorders.

Journal Article
TL;DR: There is evidence to support the hypothesis that neurosteroids contribute to ethanol actions and prevent excessive drinking, while the lack of neurosteroid responses to ethanol may underlie innate or chronic tolérance and increased risk of excessive drinking.
Abstract: Activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to elevations in γ-aminobutyric acid (GABA)-ergic neuroactive steroids that enhance GABA neurotransmission and restore homeostasis following stress. This regulation of the HPA axis maintains healthy brain function and protects against neuropsychiatrie disease. Ethanol sensitivity is influenced by elevations in neuroactive steroids that enhance the GABAergic effects of ethanol, and mayprevent excessive drinking in rodents and humans. Low ethanol sensitivity is associated with greater alcohol consumption and increased risk ofalcoholism. Indeed, ethanol-dependent rats show blunted neurosteroid responses to ethanol admin­istration that may contribute to ethanol tolerance and the propensity to drink greater amounts of ethanol. The review presents evidence to support the hypothesis that neurosteroids contribute to ethanol actions and prevent excessive drinking, while the lack of neurosteroid responses to ethanol may underlie innate or chronic tolerance and increased risk of excessive drinking. Neurosteroids may have therapeutic use in alcohol withdrawal or for relapse prevention.

Journal ArticleDOI
TL;DR: It is found that P450scc, the rate-limiting enzyme in steroid synthesis, is upregulated in hippocampal glia during the latent period after pilocarpine-induced SE in rats, suggesting that enhanced steroid synthesis retards epileptogenesis.

Journal ArticleDOI
TL;DR: The findings indicate that an exposure to juvenile stress has long-lasting effects on behavior and DHEAS levels in the hypothalamus and the entorhinal cortex, which may be of relevance to the understanding of early life stress-related disorders such as PTSD and major depression.

Journal ArticleDOI
TL;DR: This work fractionated free steroids and their sulfate esters and converted them to heptafluorobutyrate or methyloxime-trimethylsilyl ether derivatives and provided a basis for elucidating the origins and regulation of brain steroids.
Abstract: Steroids in the brain arise both from local synthesis and from peripheral sources and have a variety of effects on neuronal function. However, there is little direct chemical evidence for the range of steroids present in brain or of the pathways for their synthesis and inactivation. This information is a prerequisite for understanding the regulation and function of brain steroids. After extraction from adult male rat brain, we have fractionated free steroids and their sulfate esters and then converted them to heptafluorobutyrate or methyloxime-trimethylsilyl ether derivatives for unequivocal identification and assay by gas chromatography analysis and selected ion monitoring mass spectrometry. In the free steroid fraction, corticosterone, 3alpha,5alpha-tetrahydrodeoxycorticosterone, testosterone, and dehydroepiandrosterone were found in the absence of detectable precursors usually found in endocrine glands, indicating peripheral sources and/or alternative synthetic pathways in brain. Conversely, the potent neuroactive steroid 3alpha,5alpha-tetrahydroprogesterone (allopregnanolone) was found in the presence of its precursors pregnenolone, progesterone, and 5alpha-dihydroprogesterone. Furthermore, the presence of 3beta-, 11beta-, 17alpha-, and 20alpha-hydroxylated metabolites of 3alpha,5alpha-tetrahydroprogesterone implicated possible inactivation pathways for this steroid. The 20alpha-reduced metabolites could also be found for pregnenolone, progesterone, and 5alpha-dihydroprogesterone, introducing a possible regulatory diversion from the production of 3alpha,5alpha-tetrahydroprogesterone. In the steroid sulfate fraction, dehydroepiandrostrone sulfate was identified but not pregnenolone sulfate. Although pharmacologically active, identification of the latter appears to be an earlier methodological artifact, and the compound is thus of doubtful physiological significance in the adult brain. Our results provide a basis for elucidating the origins and regulation of brain steroids.