scispace - formally typeset
Search or ask a question

Showing papers on "Pathogenic bacteria published in 2014"


Journal ArticleDOI
TL;DR: Evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria are presented to suggest thatAgNPs could be used as an adjuvant for the treatment of infectious diseases.
Abstract: Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.

441 citations


Journal ArticleDOI
31 Oct 2014-Mbio
TL;DR: Very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic.
Abstract: How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria.

432 citations


Journal ArticleDOI
TL;DR: The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria.
Abstract: This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products.

237 citations


Journal ArticleDOI
TL;DR: The effectiveness of phage applications in fighting against pathogenic bacteria depends on several factors such as the bacteriophages/target bacteria ratio, the mode and moment of treatment, environmental conditions, the neutralization ofphage and accessibility to target bacteria, amongst others.
Abstract: In recent years, the use of lytic bacteriophages as antimicrobial agents controlling pathogenic bacteria has appeared as a promising new alternative strategy in the face of growing antibiotic resistance which has caused problems in many fields including medicine, veterinary medicine, and aquaculture. The use of bacteriophages has numerous advantages over traditional antimicrobials. The effectiveness of phage applications in fighting against pathogenic bacteria depends on several factors such as the bacteriophages/target bacteria ratio, the mode and moment of treatment, environmental conditions (pH, temperature...), the neutralization of phage and accessibility to target bacteria, amongst others. This report presents these factors and the challenges involved in developing phage therapy applications.

227 citations


Journal ArticleDOI
TL;DR: The potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host are highlighted.
Abstract: The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.

152 citations


Journal ArticleDOI
TL;DR: This review presents promising approaches or strategies that could improve the ability to prevent or eradicate bacterial biofilms in medical settings, most of these approaches are adjunctive using new molecules in combination with antibiotics.

124 citations


Journal ArticleDOI
TL;DR: Results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria.
Abstract: α–Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC–dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.

120 citations


Journal ArticleDOI
TL;DR: A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water and was attractive for capturing a wide range of pathogens.

111 citations


Journal ArticleDOI
02 Dec 2014-PLOS ONE
TL;DR: Direct supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture.
Abstract: Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL−1) and one was later treated with a phage lysate (∼108 PFU mL−1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture.

110 citations


Journal ArticleDOI
TL;DR: Many species of LAB were isolated from the faecal samples of broiler chicken that resistance to the common antibiotics used in the farm and it is essential to advise farmer the safety measure of antibiotic application in animal farming.
Abstract: Background Probiotics are commonly used as feed additive to substitute antibiotic as growth promoter in animal farming. Probiotic consists of lactic acid bacteria (LAB), which enhance the growth and health of the animal. Probiotic also have higher possibility to become pathogenic bacteria that may carry antibiotic resistant gene that can be transmitted to other LAB species. The aim of this study was to identify the LAB species in the faeces of broiler chicken and to determine the prevalence of antibiotic resistant in LAB of broiler chicken.

105 citations


Journal ArticleDOI
03 Dec 2014-PLOS ONE
TL;DR: Positive charges are added to flavin derivatives to enable attachment of these molecules to the negatively charged surface of bacteria to allow photosensitizers for topical application to decolonize bacteria from skin and mucosa.
Abstract: Photodynamic inactivation of bacteria (PIB) proves to be an additional method to kill pathogenic bacteria. PIB requires photosensitizer molecules that effectively generate reactive oxygen species like singlet oxygen when exposed to visible light. To allow a broad application in medicine, photosensitizers should be safe when applied in humans. Substances like vitamin B2, which are most likely safe, are known to produce singlet oxygen upon irradiation. In the present study, we added positive charges to flavin derivatives to enable attachment of these molecules to the negatively charged surface of bacteria. Two of the synthesized flavin derivatives showed a high quantum yield of singlet oxygen of approximately 75%. Multidrug resistant bacteria like MRSA (Methicillin resistant Staphylococcus aureus), EHEC (enterohemorrhagic Escherichia coli), Pseudomonas aeruginosa, and Acinetobacter baumannii were incubated with these flavin derivatives in vitro and were subsequently irradiated with visible light for seconds only. Singlet oxygen production in bacteria was proved by detecting its luminescence at 1270 nm. After irradiation, the number of viable bacteria decreased up to 6 log10 steps depending on the concentration of the flavin derivatives and the light dosimetry. The bactericidal effect of PIB was independent of the bacterial type and the corresponding antibiotic resistance pattern. In contrast, the photosensitizer concentration and light parameters used for bacteria killing did not affect cell viability of human keratinocytes (therapeutic window). Multiresistant bacteria can be safely and effectively killed by a combination of modified vitamin B2 molecules, oxygen and visible light, whereas normal skin cells survive. Further work will include these new photosensitizers for topical application to decolonize bacteria from skin and mucosa.

Journal ArticleDOI
TL;DR: Despite its recognized abundance as commensal bacteria and its possible role as reservoir of virulence and resistance genes for other staphylococci, the S. sciuri species group is often considered harmless and, as such, not as well documented as S. aureus.

Journal ArticleDOI
TL;DR: It is shown how active or proactive compounds attached to polymeric surfaces using lipase-sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection.
Abstract: Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase-sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof-of-concept of the responsive material is demonstrated by the bacteria-triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self-regulating system provides the basis for the development of device-relevant polymeric materials, which only release antibiotics in dependency of the titer of bacteria surrounding the medical device.

Journal ArticleDOI
TL;DR: The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health.

Journal ArticleDOI
TL;DR: Overall, the isolated strain showed favorable potential as a bioactive therapeutic agent and should be subjected to the other required tests to prove its suitability for clinical therapeutic application.
Abstract: Numerous bacteria in and on its external parts protect the human body from harmful threats. This study aimed to investigate the potential beneficial effects of the vaginal ecosystem microbiota. A type of bacteria was isolated from vaginal secretions of adolescent and young adult women, cultured on an appropriate specific culture medium, and then molecularly identified through 16S rDNA gene sequencing. Results of 16S rDNA sequencing revealed that the isolate belongs to the Lactobacillus plantarum species. The isolated strain exhibited probiotic properties such as low pH and high bile salt concentration tolerance, antibiotic susceptibility and antimicrobial activity against some pathogenic bacteria. The anticancer effects of the strain on human cancer cell lines (cervical, HeLa; gastric, AGS; colon, HT-29; breast, MCF-7) and on a human normal cell line (human umbilical vein endothelial cells [HUVEC]) were investigated. Toxic side effects were assessed by studying apoptosis in the treated cells. The strain exhibited desirable probiotic properties and remarkable anticancer activity against the tested human cancer cell lines (P ≤ 0.05) with no significant cytotoxic effects on HUVEC normal cells (P ≤ 0.05). Overall, the isolated strain showed favorable potential as a bioactive therapeutic agent. Therefore, this strain should be subjected to the other required tests to prove its suitability for clinical therapeutic application.

Journal ArticleDOI
01 Oct 2014-Peptides
TL;DR: The antibacterial efficiency of nisin against pathogenic bacteria related to dental caries and root canal infection is summarized and the combination ofnisin and common oral drugs is discussed.

Journal ArticleDOI
TL;DR: The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan, which makes it a potential therapeutic agent against gram- negative bacteria.
Abstract: Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from 24°C to 65°C). It showed maximal activity at 50°C, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria.

Journal ArticleDOI
TL;DR: Results indicate that S. lamellicola BCP suppresses the development of plant bacterial diseases through the production of antibacterial metabolites.
Abstract: The antagonistic fungus Simplicillium lamellicola BCP has been developed as a microbial biopesticide that effectively controls the development of various plant diseases caused by both pathogenic bacteria and pathogenic fungi. Antibacterial bioassay-directed fractionation was used to isolate mannosyl lipids from S. lamellicola BCP, and the structures of these compounds were elucidated using spectral analysis and chemical degradation. Three novel mannosyl lipids were characterized and identified as halymecins F and G and (3R,5R)-3-O-β-D-mannosyl-3,5-dihydrodecanoic acid. Massoia lactone and (3R, 5R)-3-hydroxydecan-5-olide were also isolated from S. lamellicola BCP. The three novel compounds inhibited the growth of the majority of phytopathogenic bacteria that were tested, and halymecin F displayed the strongest antibacterial activity. Agrobacterium tumefaciens was the most sensitive to the three novel compounds, with IC₅₀ values ranging from 1.58 to 24.8 μg/mL. The ethyl acetate extract of the fermentation broth from the antagonistic fungus effectively reduced the bacterial wilt caused by Ralstonia solanacearum on tomato seedlings. These results indicate that S. lamellicola BCP suppresses the development of plant bacterial diseases through the production of antibacterial metabolites.

Journal ArticleDOI
TL;DR: This review focuses on selected human pathogenic bacteria and the current understanding of their host specificity and certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature.
Abstract: Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.

Journal ArticleDOI
TL;DR: A highly conserved regulatory motif, the rifampin (RIF) -associated element (RAE), which is found upstream of genes encoding RIF-inactivating enzymes from a diverse collection of actinomycetes is described, which identifies a new antibiotic resistance protein family.
Abstract: Many environmental bacteria are multidrug-resistant and represent a reservoir of ancient antibiotic resistance determinants, which have been linked to genes found in pathogens. Exploring the environmental antibiotic resistome, therefore, reveals the diversity and evolution of antibiotic resistance and also provides insight into the vulnerability of clinically used antibiotics. In this study, we describe the identification of a highly conserved regulatory motif, the rifampin (RIF) -associated element (RAE), which is found upstream of genes encoding RIF-inactivating enzymes from a diverse collection of actinomycetes. Using gene expression assays, we confirmed that the RAE is involved in RIF-responsive regulation. By using the RAE as a probe for new RIF-associated genes in several actinomycete genomes, we identified a heretofore unknown RIF resistance gene, RIF phosphotransferase (rph). The RPH enzyme is a RIF-inactivating phosphotransferase and represents a new protein family in antibiotic resistance. RPH orthologs are widespread and found in RIF-sensitive bacteria, including Bacillus cereus and the pathogen Listeria monocytogenes. Heterologous expression and in vitro enzyme assays with purified RPHs from diverse bacterial genera show that these enzymes are capable of conferring high-level resistance to a variety of clinically used rifamycin antibiotics. This work identifies a new antibiotic resistance protein family and reinforces the fact that the study of resistance in environmental organisms can serve to identify resistance elements with relevance to pathogens.

Journal ArticleDOI
TL;DR: It is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.
Abstract: Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

Journal ArticleDOI
TL;DR: It is demonstrated that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens within the carrier state life cycle (CSLC).
Abstract: Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

Journal ArticleDOI
TL;DR: In this article, a total of nine strains of Lactobacillus were isolated from curd and identification of strains was done by biochemical and physiological tests and L. casei, L. delbrueckii, L lactis, brevis, fermentum, coagulans, acidophilus, lactis and rhamnosus strains were identified from the curd.
Abstract: The aim of this study was to isolate and identify probiotic lactic acid bacteria from curd and evaluate in vitro, its growth inhibition activities against pathogenic bacteria. A total of nine strains of Lactobacillus were isolated from curd and identification of strains was done by biochemical and physiological tests and Lactobacillus leichmannii, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus coagulans, Lactobacillus acidophilus, Lactobacillus lactis and Lactobacillus rhamnosus strains were identified from curd. Lactobacillus strains survival were also assessed under conditions simulating human GI tract. Therefore, resistance to antibiotics, resistance to low pH, resistance to bile salt and bile salt hydrolysis was performed. Results showed that all tested isolates were able to grow at low pH 3.0, and at 0.3% bile concentration. L. casei, L. delbrueckii and L. brevis showed more resistance to antibiotics. According to haemolytic activity, all examined strains did not exhibit β-haemolytic activity when grown in Columbia human blood agar. Regarding the bile salt hydrolysis, L. casei and L. delbruekii showed partial bile salt hydrolysis activity and colony morphology was recorded as differentiated in comparison with the control MRS agar plates. Finally, antimicrobial activities of lactobacillus isolates were tested against five pathogenic bacteria (Staphylococcus sp., Bacillus sp., Klebsiella sp., Pseudomonas sp. and E. coli sp.) at pH 6.5 by disc diffusion method. All the tested isolates showed in vitro inhibitory zone against pathogenic bacteria. L. casei and L. delbrueckii showed maximum inhibition zone. In conclusion, the present study showed that L. casei and L. delbrueckii can be used as potential probiotic lactic acid bacteria. Key words: Lactobacillus, curd, probiotics, antibiotic resistance, resistance to low pH, resistance to bile, pathogenic bacteria.

Journal ArticleDOI
TL;DR: High sensitivity among YW flies to bacterial infections and increased bacterial growth compared to the other strains is detected and variation in the transcription of certain antimicrobial peptide genes among strains is found, with Oregon and YW infected flies showing the highest and lowest gene transcription levels in most cases.
Abstract: Studies on the innate immune response against microbial infections in Drosophila melanogaster involve mutant strains and their reference strains that act as experimental controls. We used five standard D. melanogaster laboratory reference strains (Oregon R, w1118, Canton-S, Cinnabar Brown, and Yellow White [YW]) and investigated their response against two pathogenic bacteria (Photorhabdus luminescens and Enterococcus faecalis) and two nonpathogenic bacteria (Escherichia coli and Micrococcus luteus). We detected high sensitivity among YW flies to bacterial infections and increased bacterial growth compared to the other strains. We also found variation in the transcription of certain antimicrobial peptide genes among strains, with Oregon and YW infected flies showing the highest and lowest gene transcription levels in most cases. We show that Oregon and w1118 flies possess more circulating hemocytes and higher levels of phenoloxidase activity than the other strains upon infection with the nonpathogenic bacteria. We further observed reduced fat accumulation in YW flies infected with the pathogenic bacteria, which suggests a possible decline in physiological condition. Finally, we found that nitrite levels are significantly lower in infected and uninfected YW flies compared to w1118 flies and that nitric oxide synthase mutant flies in YW background are more susceptible to bacterial infection compared to mutants in w1118 background. Therefore, increased sensitivity of YW flies to bacterial infections can be partly attributed to lower levels of nitric oxide. Such studies will significantly contribute toward a better understanding of the genetic variation between D. melanogaster reference strains.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the occurrence of the acidic sugars based on pseudaminic acid and legionaminic acids within pathogenic Gram-negative bacteria and discuss the potential biological role of these unusual sugars.
Abstract: This article describes the occurrence of the acidic sugars based on pseudaminic acid and legionaminic acid within pathogenic Gram-negative bacteria. In addition to presenting the structural variations found in these sugars, this article also discusses the potential biological role of these unusual sugars.

Journal ArticleDOI
TL;DR: The identification of antibiotically treated bacteria is possible with Raman microspectroscopy for diverse antibiotics on single cell level with a linear discriminant analysis (LDA) model.
Abstract: The identification of pathogenic bacteria is a frequently required task. Current identification procedures are usually either time-consuming due to necessary cultivation steps or expensive and demanding in their application. Furthermore, previous treatment of a patient with antibiotics often renders routine analysis by culturing difficult. Since Raman microspectroscopy allows for the identification of single bacterial cells, it can be used to identify such difficult to culture bacteria. Yet until now, there have been no investigations whether antibiotic treatment of the bacteria influences the Raman spectroscopic identification. This study aims to rapidly identify bacteria that have been subjected to antibiotic treatment on single cell level with Raman microspectroscopy. Two strains of Escherichia coli and two species of Pseudomonas have been treated with four antibiotics, all targeting different sites of the bacteria. With Raman spectra from untreated bacteria, a linear discriminant analysis (LDA) model is built, which successfully identifies the species of independent untreated bacteria. Upon treatment of the bacteria with subinhibitory concentrations of ampicillin, ciprofloxacin, gentamicin, and sulfamethoxazole, the LDA model achieves species identification accuracies of 85.4, 95.3, 89.9, and 97.3 %, respectively. Increasing the antibiotic concentrations has no effect on the identification performance. An ampicillin-resistant strain of E. coli and a sample of P. aeruginosa are successfully identified as well. General representation of antibiotic stress in the training data improves species identification performance, while representation of a specific antibiotic improves strain distinction capability. In conclusion, the identification of antibiotically treated bacteria is possible with Raman microspectroscopy for diverse antibiotics on single cell level.

Journal ArticleDOI
TL;DR: The most commonly used culture-dependent and culture-independent methods, as well as the most attractive ones with regard to their future exploitation are described, providing the reader with new insights into how and when they can be exploited to ensure the enumeration, and accurate detection at both species and strain level of the most important milk- and dairyborne pathogenic bacteria.
Abstract: Despite great advances in the diagnostics and better awareness for food safety and security worldwide, significant numbers of foodborne outbreaks have been traced back to the consumption of milk and dairy products contaminated with pathogenic bacteria, such as Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Campylobacter spp., and pathogenic Escherichia coli. Several culture-dependent and culture-independent nucleic acid-based methods have been proposed to identify, detect, and type milk- and dairyborne pathogenic bacteria. In our review, we will provide an overview on why it is of utmost importance to ascertain the presence of pathogenic microorganisms in milk and milk products; thereafter, we will describe the most commonly used culture-dependent and culture-independent methods, as well as the most attractive ones with regard to their future exploitation, providing the reader with new insights into how and when they can be exploited to ensure the enumeration, and accurate detection at both species and strain level of the most important milk- and dairyborne pathogenic bacteria, even if in a viable but nonculturable state.

Journal ArticleDOI
06 Jan 2014-Insects
TL;DR: This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus and Bacillus, two bacteria with dissimilar life styles, and the implications of the nervous system in biocontrol.
Abstract: This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.

Journal ArticleDOI
TL;DR: The present approach offers a highly sensitive, fast, and simple method for the cell capture of the pathogenic bacteria from septicemic patients or contaminated blood before blood transfusion.
Abstract: A novel method for pathogenic bacteria identification directly from blood samples using cationic ionic liquid-modified magnetic nanoparticles (CILMS) is reported. The magnetic nanoparticles were prepared by co-precipitation and the core–shell Fe3O4@SiO2 nanoparticles were prepared by the sol–gel process, followed by the grafting of 3-chloropropyltrimethoxysilane that was reacted further with N-methylimidazole to form cationic ionic liquid-modified Fe3O4@SiO2 magnetic nanoparticles (CILMS). The pathogenic bacteria were separated mainly based on the electrostatic interactions among the negative charges of the cell membranes and the positive charges of the CILMS particles. CILMS are used directly without the need for any further apparatus and auxiliary chemicals. The separated cells were detected using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). The lowest detectable number of bacteria was 3.4 × 103, 3.2 × 103, and 4.2 × 103 cfu mL−1 for Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. The bacterial affinity toward CILMS was investigated using transmission electron microscopy which revealed immobilization of the CILMS on the outer cell membranes. The present approach offers a highly sensitive, fast, and simple method for the cell capture of the pathogenic bacteria. The current approach could be adapted to separate and identify the pathogenic bacteria from septicemic patients or contaminated blood before blood transfusion.

Journal ArticleDOI
TL;DR: This study evaluated the persistency of antimicrobial resistance genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter.
Abstract: Aims This study was focused on evaluating the persistency of antimicrobial resistance (AR) genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter. Methods and Results Abundance and dynamic of AR genes encoding resistance to macrolides (ermB), aminoglycosides (aphA2) and beta-lactams (blaTEM-1) and persistency of potentially pathogenic bacteria in pilot-scale anaerobic digesters were investigated. AR genes were determined in the influent and effluent in both conditions. Overall, after 60 days, reduction was observed for all evaluated genes. However, during the summer, anaerobic digestion was more related to the gene reduction as compared to winter. Persistency of potentially pathogenic bacteria was also evaluated by metagenomic analyses compared to an in-house created database. Clostridium, Acinetobacter and Stenotrophomonas were the most identified. Conclusions Overall, considering the mesophilic ambient temperature during anaerobic digestion (summer and winter), a decrease in pathogenic bacteria detection through metagenomic analysis and AR genes is reported. Although the mesophilic anaerobic digestion has been efficient, the results may suggest medically important bacteria and AR genes persistency during the process. Significance and Impact of the Study This is the first report to show AR gene dynamics and persistency of potentially pathogenic bacteria through metagenomic approach in cattle manure ambient temperature anaerobic digestion.