scispace - formally typeset
Search or ask a question

Showing papers on "Pyranose published in 2021"


Journal ArticleDOI
14 Jan 2021-Polymers
TL;DR: In this paper, the authors focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination, and the possibility of attaching cysteine molecules to an alginates backbone by oxidation and post-reductive amination processes was confirmed through 13C-NMR in solid state.
Abstract: This research focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination. In previous alginate functionalization with a target molecule such as cysteine, the starting material was purified and characterized by UV-Vis, 1H-NMR and HSQC. Additionally, the application of FT-IR techniques during each step of alginate functionalization was very useful, since new bands and spiked signals around the pyranose ring (1200-1000 cm-1) and anomeric region (1000-750 cm-1) region were identified by a second derivative. Additionally, the presence of C1-H1 of β-D-mannuronic acid residue as well as C1-H1 of α-L-guluronic acid residue was observed in the FT-IR spectra, including a band at 858 cm-1 with characteristics of the N-H moiety from cysteine. The possibility of attaching cysteine molecules to an alginate backbone by oxidation and post-reductive amination processes was confirmed through 13C-NMR in solid state; a new peak at 99.2 ppm was observed, owing to a hemiacetal group formed in oxidation alginate. Further, the peak at 31.2 ppm demonstrates the presence of carbon -CH2-SH in functionalized alginate-clear evidence that cysteine was successfully attached to the alginate backbone, with 185 μmol of thiol groups per gram polymer estimated in alginate-based material by UV-Visible. Finally, it was observed that guluronic acid residue of alginate are preferentially more affected than mannuronic acid residue in the functionalization.

14 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the fastest technique to successfully achieve carboxymethyl cellulose (CMC) from office paper waste, within 30 min at ambient temperature using ultrasonic assisted method as a source of energy.

13 citations


Journal ArticleDOI
TL;DR: In this paper, a combination of NMR measurements and statistical mechanics modelling was employed to predict a population inversion between furanose and pyranose at equilibrium at high temperatures.
Abstract: The exclusive presence of β-D-ribofuranose in nucleic acids is still a conundrum in prebiotic chemistry, given that pyranose species are substantially more stable at equilibrium. However, a precise characterisation of the relative furanose/pyranose fraction at temperatures higher than about 50 °C is still lacking. Here, we employ a combination of NMR measurements and statistical mechanics modelling to predict a population inversion between furanose and pyranose at equilibrium at high temperatures. More importantly, we show that a steady temperature gradient may steer an open isomerisation network into a non-equilibrium steady state where furanose is boosted beyond the limits set by equilibrium thermodynamics. Moreover, we demonstrate that nonequilibrium selection of furanose is maximum at optimal dissipation, as gauged by the temperature gradient and energy barriers for isomerisation. The predicted optimum is compatible with temperature drops found in hydrothermal vents associated with extremely fresh lava flows on the seafloor.

12 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used IRMPD spectroscopy with mass spectrometry (MS-IR) to differentiate between pyranose and furanose-linked galactose residues.
Abstract: Sequencing glycans is demanding due to their structural diversity. Compared to mammalian glycans, bacterial glycans pose a steeper challenge because they are constructed from a larger pool of monosaccharide building blocks, including pyranose and furanose isomers. Though mammalian glycans incorporate only the pyranose form of galactose (Galp), many pathogens, including Mycobacterium tuberculosis and Klebsiella pneumoniae, contain galactofuranose (Galf) residues in their cell envelope. Thus, glycan sequencing would benefit from methods to distinguish between pyranose and furanose isomers of different anomeric configurations. We used infrared multiple photon dissociation (IRMPD) spectroscopy with mass spectrometry (MS-IR) to differentiate between pyranose- and furanose-linked galactose residues. These targets pose a challenge for MS-IR because the saccharides lack basic groups, and galactofuranose residues are highly flexible. We postulated cationic groups that could complex through hydrogen bonding would offer a solution. Here, we present the first MS-IR analysis of hexose ammonium adducts. We compared their IR fingerprints with those of lithium adducts. We determined the diagnostic MS-IR signatures of the α- and β-anomers of galactose in furanose and pyranose forms. We also showed these signatures could be applied to disaccharides to assign galactose ring size. Our findings highlight the utility of MS-IR for analyzing the unique substructures that occur in bacterial glycans.

10 citations


Journal ArticleDOI
TL;DR: Structural studies on 2-DG and its derivatives provide a better understanding of the structural chemistry of halogen-substituted carbohydrates as well as their intermolecular interactions with proteins determining their distinct biological activity.
Abstract: The results of structural studies on a series of halogen-substituted derivatives of 2-deoxy-D-glucose (2-DG) are reported. 2-DG is an inhibitor of glycolysis, a metabolic pathway crucial for cancer cell proliferation and viral replication in host cells, and interferes with D-glucose and D-mannose metabolism. Thus, 2-DG and its derivatives are considered as potential anticancer and antiviral drugs. X-ray crystallography shows that a halogen atom present at the C2 position in the pyranose ring does not significantly affect its conformation. However, it has a noticeable effect on the crystal structure. Fluorine derivatives exist as a dense 3D framework isostructural with the parent compound, while Cl- and I-derivatives form layered structures. Analysis of the Hirshfeld surface shows formation of hydrogen bonds involving the halogen, yet no indication for the existence of halogen bonds. Density functional theory (DFT) periodic calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings. NMR studies in the solution show that most of the compounds do not display significant differences in their anomeric equilibria, and that pyranose ring puckering is similar to the crystalline state. For 2-deoxy-2-fluoro-D-glucose (2-FG), electrostatic interaction energies between the ligand and protein for several existing structures of pyranose 2-oxidase were also computed. These interactions mostly involve acidic residues of the protein; single amino-acid substitutions have only a minor impact on binding. These studies provide a better understanding of the structural chemistry of halogen-substituted carbohydrates as well as their intermolecular interactions with proteins determining their distinct biological activity.

6 citations


Journal ArticleDOI
TL;DR: In this paper, a series of chemical shift anisotropy/dipole-dipoles cross-correlated relaxation NMR experiments was performed in which the α-anomeric form showed notable different relaxation rates for its components of the H1 doublet, thereby making it possible to elucidate the anomeric configuration of each of the furanoses.
Abstract: D-Allosamine is a rare sugar in Nature but its pyranoid form has been found α-linked in the core region of the lipopolysaccharide from the Gram-negative bacterium Porphyromonas gingivalis and in the chitanase inhibitor allosamidin, then β-linked and N-acetylated. In water solution the monosaccharide N-acetyl-D-allosamine (D-AllNAc) shows a significant presence of four tautomers arising from pyranoid and furanoid ring forms and anomeric configurations. The furanoid ring forms both showed 3JH1,H2 ≈ 4.85 Hz and to differentiate the anomeric configurations a series of chemical shift anisotropy/dipole–dipole cross-correlated relaxation NMR experiments was performed in which the α-anomeric form showed notable different relaxation rates for its components of the H1 doublet, thereby making it possible to elucidate the anomeric configuration of each of the furanoses. The conformational preferences of the different forms of D-AllNAc were investigated by 3JHH, 2JCH and 3JCH coupling constants from NMR experiments, molecular dynamics simulations and density functional theory calculations. The pyranose form resides in the 4C1 conformation and the furanose ring form has the majority of its conformers located on the South–East region of the pseudorotation wheel, with a small population in the Northern hemisphere. The tautomeric equilibrium was quite sensitive to changes in temperature, where the β-anomer of the pyranoid ring form decreased upon a temperature increase while the other forms increased.

5 citations


Journal ArticleDOI
TL;DR: The first synthesis of polysaccharides derived from chitosan was described in this article, where the 2-amino group on the pyranose ring was quantitively replaced by an aromatic 1,2,3-triazole moiety.

3 citations


Journal ArticleDOI
21 Sep 2021
TL;DR: In this paper, the chemical composition of extracellular polymeric substances (EPSs) from sulfate-reducing alkanexedens ALDCs was investigated with scanning and fluorescent microscopy, nuclear magnetic resonance spectroscopy, and colorimetric chemical assays.
Abstract: Sulfate-reducing bacteria (SRB) often exist as cell aggregates and in biofilms surrounded by a matrix of extracellular polymeric substances (EPSs). The chemical composition of EPSs may facilitate hydrophobic substrate biodegradation and promote microbial influenced corrosion (MIC). Although EPSs from non-hydrocarbon-degrading SRB have been studied; the chemical composition of EPSs from hydrocarbon-degrading SRBs has not been reported. The isolated EPSs from the sulfate-reducing alkane-degrading bacterium Desulfoglaeba alkanexedens ALDC was characterized with scanning and fluorescent microscopy, nuclear magnetic resonance spectroscopy (NMR), and by colorimetric chemical assays. Specific fluorescent staining and 1H NMR spectroscopy revealed that the fundamental chemical structure of the EPS produced by D. alkanexedens is composed of pyranose polysaccharide and cyclopentanone in a 2:1 ratio. NMR analyses indicated that the pyranose ring structure is bonded by 1,4 connections with the cyclopentanone directly bonded to one pyranose ring. The presence of cyclopentanone presumably increases the hydrophobicity of the EPS that may facilitate the accessibility of hydrocarbon substrates to aggregating cells or cells in a biofilm. Weight loss and iron dissolution experiments demonstrated that the EPS did not contribute to the corrosivity of D. alkanexedens cells.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the coordination chemistry of the corresponding monomeric units of alginate, L-guluronate (GulA) and D-mannuronate(ManA) have been studied.
Abstract: The best-known theory accounting for metal-alginate complexation is the so-called "Egg Box" model. In order to gain greater insight into the metal-saccharide interactions that underpin this model, the coordination chemistry of the corresponding monomeric units of alginate, L-guluronate (GulA) and D-mannuronate (ManA) have been studied herein. GulA and ManA were exposed to solutions of different s-block cations and then analysed by 1H and 13C NMR spectroscopy. It was found that the α/β ratio of the pyranose anomeric equilibria of GulA showed large pertubations from the starting value (α/β = 0.21 ± 0.01) upon contact with 1.0 M Ca2+, Sr2+, and Ba2+ (α/β = 1.50 ± 0.03, 1.20 ± 0.02, and 0.58 ± 0.02, respectively) at pD 7.9, but remained almost constant in the presence of Na+, K+, and Mg2+ (α/β = 0.24 ± 0.01, 0.19 ± 0.01, and 0.26 ± 0.01, respectively). By comparison, no significant changes were observed in the α/β ratios of ManA and related mono-uronates D-glucuronate (GlcA) and D-galacturonate (GalA) in the presence of all of the metal ions surveyed. Analysis of the 1H and 13C coordination chemical shift patterns indicate that the affinity of α-GulA for larger divalent cations is a consequence of the unique ax-eq-ax arrangement of hydroxyl groups found for this uronate anomer.

3 citations


Journal ArticleDOI
TL;DR: The branching ratio of major dissociation channels was governed by two geometrical features: one being the cis or trans configuration of O1 and O2 atoms determining dehydration preferability and the other being the number of hydroxyl groups on the same side of the ring as the O1 atom determining the preferability of cross-ring dissociation.
Abstract: Arabinose and ribose are two common pentoses that exist in both furanose and pyranose forms in plant and bacteria oligosaccharides. In this study, each pentose isomer, namely α-furanose, β-furanose, α-pyranose, and β-pyranose, was first separated through high-performance liquid chromatography followed by an investigation of collision-induced dissociation in an ion trap mass spectrometer. The major dissociation channels, dehydration and cross-ring dissociation, were analyzed by using high-level quantum chemistry calculations and transition state theory. The branching ratio of major dissociation channels was governed by two geometrical features: one being the cis or trans configuration of O1 and O2 atoms determining dehydration preferability and the other being the number of hydroxyl groups on the same side of the ring as the O1 atom determining the preferability of cross-ring dissociation. The relative branching ratios of the major channels were used to identify anomericity and the linkages of arabinose and ribose. Arabinose in the β-configuration and ribose in the α-configuration are predicted to have larger relative dehydration branching ratios than arabinose in the α-configuration and ribose in the β-configuration, respectively. Arabinose and ribose at the reducing end of oligosaccharides with 1 → 2 (pyranose and furanose), 1 → 3 (pyranose and furanose), 1 → 4 (pyranose only), and 1 → 5 (furanose only) linkages are predicted to undergo 0,2X, 0,3X, 0,2A, and 0,2A/0,3A cross-ring dissociation, respectively. Application of the dissociation mechanism to the disaccharide linkage determination is demonstrated.

2 citations


Journal ArticleDOI
TL;DR: In this article, online Raman spectroscopy and deconvolution techniques were successfully applied to monitor in real time the D-mannose and D-glucose concentrations using the Raman shifts at 960 cm-1 and 974 cm- 1 respectively.
Abstract: Raman spectroscopy was applied to an aqueous solution containing D-mannose and D-glucose at a fixed dry matter content. The Raman measurement apparatus was adapted online at the industrial scale to monitor a bioprocess including an epimerization reaction. Online Raman spectroscopy and deconvolution techniques were successfully applied to monitor in real time the D-mannose and D-glucose concentrations using the Raman shifts at 960 cm-1 and 974 cm-1 respectively. The two anomeric forms, α and β of D-mannose in the pyranose conformation were quantified. In silico analysis of vibrational frequencies and Raman intensities of hydrated structure of D-mannose and D-glucose in the pyranose form for α and β anomers were carried out using a two-step procedure. First molecular dynamics was used to generate the theoretical carbohydrates' structures keeping the experimental dry matter content, then quantum mechanics was used to compute the Raman frequencies and intensities. Computed vibrational frequencies are in satisfactory agreement with the experimental spectra considering a hydration shell approach. Raman intensities are qualitatively in accordance with the experimental data. The interpretation of Raman frequencies and intensities led to acceptable results regarding the current possible structures of D-mannose and D-glucose in aqueous solution. Online Raman spectroscopy coupled with in silico approaches such as quantum mechanics and molecular dynamics methodology is proved to be a valuable tool to quantify the carbohydrates and stereoisomers content in complex aqueous mixtures. This methodology offers a new way to monitor any bioprocesses that encounter aqueous mixtures of D-glucose and D-mannose.

Journal ArticleDOI
TL;DR: In this article, the 13C NMR chemical shifts of some common pyranose monosaccharides in D2O solution were predicted using a combined molecular mechanics (Pcmod 9.1/MMFF94) and ab initio (GIAO (B3LYP/DFT, 6-31G(d))) model.
Abstract: The 13C NMR chemical shifts of some common pyranose monosaccharides in D2O solution were predicted using a combined molecular mechanics (Pcmod 9.1/MMFF94) and ab initio (GIAO (B3LYP/DFT, 6-31G(d))) model. This method has been successfully used for a range of organic molecules in CDCl3 solution but has not previously been used for aqueous solutions. The method gave such good agreement with experiment that the populations of the conformers at C6 of the monosaccharides could be obtained. This has been attempted previously by various methods with diverse results. In all the compounds studied the α and β anomers have similar populations. In glucose the populations of the GG and GT conformers are ca equal with TG a minor component, in galactose GT has the largest population and GG the smallest, in mannose GG is preferred with TG a minor component and in talose GT and TG are favoured with GG a minor constituent. The results are in general agreement with previous work. To our knowledge this is the first time that 13C shifts have been used to determine sugar conformations in solution. The conformation of sucrose in D2O solution was examined by both 1H and 13C NMR. The complete analysis of the 1H NMR spectrum has been achieved and provides information on the preferred conformations of the CH2OH fragments at G6 (GG) and F6 (GG, GT). Calculations of the 13C shifts confirm these results and show also that the conformation at F1 is mainly GG plus TG. The sucrose conformational profile in solution includes the crystal structure together with the above conformations at F1 and F6.

Journal ArticleDOI
TL;DR: In this paper, the applicability and efficacy of various hydride donor and protic or Lewis acid reagent combinations in the reductive ring opening of glucosidic 4,6-halobenzylidene acetals bearing an ortho-, meta-, and para-chloro- or -bromo substituent on the benzene ring were evaluated.
Abstract: Reductive openings of cyclic acetals are widely used in modern synthetic organic chemistry for the regioselective introduction of protecting groups. A systematic study was performed on the applicability and efficacy of various hydride donor and protic or Lewis acid reagent combinations in the reductive ring opening of glucosidic 4,6-halobenzylidene acetals bearing an ortho-, meta-, and para-chloro- or -bromo substituent on the benzene ring. Most of the reagent combinations tested cleaved the 4,6-O-halobenzylidene acetal rings at O4 or O6 efficiently and with the expected regioselectivity. The LiAlH4-AlCl3 and the BH3·THF-TMSOTf combinations produced the 4-O-halobenzyl ether/6-OH products with complete regioselectivity and high yields. The use of Me3N·BH3-AlCl3 reagent system in toluene was also effective in cleaving the acetal ring at O6 but was accompanied by Al-chelation-assisted debenzylation side reactions. The NaCNBH3-HCl and the Et3SiH-BF3·Et2O combinations were highly effective in yielding the 6-halobenzyl ether/4-OH derivatives. Et3SiH, in combination with TfOH, produced the 6-O-ether/4-OH products in rapid reactions but also triggered silylation and reductive halobenzylation as secondary transformations. Reductive opening of the 1,3-dioxane ring of pyranosidic 4,6-O-halobenzylidene acetals by the proper reagent combination was found to be an efficient method for the regioselective introduction of versatile halobenzyl protecting groups onto the pyranose ring.

Journal ArticleDOI
TL;DR: In this article, a facile isomerization reaction that produces furanose N-acetylated ions was identified and characterized using tandem mass spectrometry (MS/MS and MSn), isotopic labelling and high-level simulations.
Abstract: Peptidoglycans are diverse co- and post-translational modifications of key importance in myriad biological processes. Mass spectrometry is employed to infer their biomolecular sequences and stereochemisties, but little is known about the critical gas-phase dissociation processes involved. Here, using tandem mass spectrometry (MS/MS and MSn), isotopic labelling and high-level simulations, we identify and characterize a facile isomerization reaction that produces furanose N-acetylated ions. This reaction occurs for both O- and N-linked peptidoglycans irrespective of glycosidic linkage stereochemistry (α/β). Dissociation of the glycosidic and other bonds thus occur from the furanose isomer critically altering the reaction feasibility and product ion structures.

Journal ArticleDOI
TL;DR: The tautomer structure of monosaccharides plays an important role in its conversion and utilization, which is mainly manifested in the selectivity of the product and the reaction mechanism as discussed by the authors.

Journal ArticleDOI
TL;DR: In this article, the reactivity of the pyranose part of a bicyclic osidic scaffold of pyrimidino-pyranoside type was explored for opening 4,6- O -benzylidene.
Abstract: After the preparation with few steps of the original bicyclic osidic scaffold of pyrimidino-pyranoside type, the exploration of the reactivity of the pyranose part allowed us to carry out different procedures for opening 4,6- O -benzylidene.

Journal ArticleDOI
TL;DR: The condensation products of natural monosaccharides L-fucose, L-rhamnose, N-acetylamino-D-mannose with thioglycolic acid hydrazide have a cyclic 1,3,4-thiadiazine structure as discussed by the authors.
Abstract: The condensation products of natural monosaccharides L-fucose, L-rhamnose, N-acetylamino-D-glucose and N-acetylamino-D-mannose with thioglycolic acid hydrazide have a cyclic 1,3,4-thiadiazine structure or are presented in solution in DMSO-d6 by a tautomeric mixture of pyranose and 1,3,4-thiadiazine forms. It was shown that L-rhamnose and N-acetylamino-D-mannose mercaptoacetyl hydrazones exhibit high radioprotective activity, increasing the survival rate of mortally irradiated mice by 35–45%.

Journal ArticleDOI
02 Jul 2021
TL;DR: In this paper, potentially bioactive condensation products of adenine with Dmannose and 6-deoxy-L-mannose (L-rhamnose) were synthesized in water and ethanol solutions.
Abstract: In this work, potentially bioactive condensation products of adenine with D-mannose and 6-deoxy-L-mannose (L-rhamnose) were synthesized in water and ethanol solutions. According to FTIR spectroscopy and elemental analysis, mono-N 6 -glycosylated adenines were isolated from water systems in satisfactory yields, while ethanol solutions contained mixtures of N 6 and N 9 -products, as well as complexes of the latter with copper ions. A detailed analysis of the vibrational spectra of N 6 -glycosyladenines confirmed the structure of carbohydrate fragments in the form of pyranose rings, while some part of the product was obtained in the form of deoxyaminoketosis. N-rhamnosyladenine was formed with a more than double yield because of a higher stability of rhamnose with regard to side reactions. The reflection spectra of model solutions of glycosyladenines, recorded 4 days after preparation, showed no bands characteristic of free adenine in the range of 1250-1110 cm -1 , which indicates a sufficient resistance of the synthesized products towards hydrolytic cleavage under experimental conditions. The conducted biotesting of the isolated products on wheat seeds (Triticum aestivum L.) showed an increase in the content of chlorophylls in seedlings for both mannosilade-nines compared to the control. A decrease in the concentration of synthesized products in germination solutions from 0.1 to 0.001% led to an increase in the accumulation of photosynthetic pigments, while this effect was more pronounced for rhamnosyladenine. The latter can be connected with the structural features of car-bohydrate fragments, in particular, the differences in the hydroxylation degree of glucoside fragments. Future research will investigate the mechanisms of transformation and action of N 6 -substituted adenines.