scispace - formally typeset
Search or ask a question

Showing papers on "Quantum dot published in 2016"


Journal ArticleDOI
07 Oct 2016-Science
TL;DR: N nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices and describe the formation of α-CsP bI3 QD films that are phase-stable for months in ambient air.
Abstract: We show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI 3 (α-CsPbI 3 )—the variant with desirable band gap—is only stable at high temperatures. We describe the formation of α-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.

2,103 citations


Journal ArticleDOI
TL;DR: In this paper, a room-temperature (RT) synthesis of CsPbX3@X quantum-well band alignment is proposed to guarantee the excitons generation and high-rate radiative recombination at RT.
Abstract: Recently, Kovalenko and co-workers and Li and co-workers developed CsPbX3 (X = Cl, Br, I) inorganic perovskite quantum dots (IPQDs), which exhibited ultrahigh photoluminescence (PL) quantum yields (QYs), low-threshold lasing, and multicolor electroluminescence. However, the usual synthesis needs high temperature, inert gas protection, and localized injection operation, which are severely against applications. Moreover, the so unexpectedly high QYs are very confusing. Here, for the first time, the IPQDs' room-temperature (RT) synthesis, superior PL, underlying origins and potentials in lighting and displays are reported. The synthesis is designed according to supersaturated recrystallization (SR), which is operated at RT, within few seconds, free from inert gas and injection operation. Although formed at RT, IPQDs' PLs have QYs of 80%, 95%, 70%, and FWHMs of 35, 20, and 18 nm for red, green, and blue emissions. As to the origins, the observed 40 meV exciton binding energy, halogen self-passivation effect, and CsPbX3@X quantum-well band alignment are proposed to guarantee the excitons generation and high-rate radiative recombination at RT. Moreover, such superior optical merits endow them with promising potentials in lighting and displays, which are primarily demonstrated by the white light-emitting diodes with tunable color temperature and wide color gamut.

1,932 citations


Journal ArticleDOI
23 Dec 2016-Science
TL;DR: This work demonstrates the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of thenanowire as a spectrometer and observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model.
Abstract: Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.

965 citations


Journal ArticleDOI
TL;DR: A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite quantum dots (QDs) are replaced with halide-ion-pair ligands.
Abstract: A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

858 citations


Journal ArticleDOI
Shibin Sun1, Dan Yuan1, Yuan Xu1, Aifei Wang1, Zhengtao Deng1 
19 Feb 2016-ACS Nano
TL;DR: This method provides a facile and versatile route to rationally control the shape of the CsPbX3 perovskites nanocrystals, which will create opportunities for applications such as displays, lasing, light-emitting diodes, solar concentrators, and photon detection.
Abstract: Colloidal nanocrystals of fully inorganic cesium lead halide (CsPbX3, X = Cl, Br, I, or combinations thereof) perovskites have attracted much attention for photonic and optoelectronic applications. Herein, we demonstrate a facile room-temperature (e.g., 25 °C), ligand-mediated reprecipitation strategy for systematically manipulating the shape of CsPbX3 colloidal nanocrystals, such as spherical quantum dots, nanocubes, nanorods, and nanoplatelets. The colloidal spherical quantum dots of CsPbX3 were synthesized with photoluminescence (PL) quantum yield values up to >80%, and the corresponding PL emission peaks covering the visible range from 380 to 693 nm. Besides spherical quantum dots, the shape of CsPbX3 nanocrystals could be engineered into nanocubes, one-dimensional nanorods, and two-dimensional few-unit-cell-thick nanoplatelets with well-defined morphology by choosing different organic acid and amine ligands via the reprecipitation process. The shape-dependent PL decay lifetimes have been determined t...

851 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate room-temperature, polarized and ultrabright single-photon emission from a color center in two-dimensional hexagonal boron nitride.
Abstract: Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

761 citations


Journal ArticleDOI
TL;DR: A white light-emitting diode (0.33, 0.33) is fabricated using perovskite quantum dot/silica composites and is shown to have greatly improved stability.
Abstract: A white light-emitting diode (0.33, 0.33) is fabricated using perovskite quantum dot/silica composites. It is shown to have greatly improved stability.

733 citations


Journal ArticleDOI
TL;DR: It is shown that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which are assigned to band-to-band emission and radiative recombination at shallow intrinsic defect sites.
Abstract: Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nano...

726 citations


Journal ArticleDOI
TL;DR: This work mixed green quantum-dot-containing mesoporous silica nanocomposites with red PQDs, which can prevent the anion-exchange effect and increase thermal and photo stability, and applied the new PQD-based LEDs for backlight displays.
Abstract: All-inorganic CsPbX3 (X=I, Br, Cl) perovskite quantum dots (PQDs) have been investigated because of their optical properties, such as tunable wavelength, narrow band, and high quantum efficiency. These features have been used in light emitting diode (LED) devices. LED on-chip fabrication uses mixed green and red quantum dots with silicone gel. However, the ion-exchange effect widens the narrow emission spectrum. Quantum dots cannot be mixed because of anion exchange. We address this issue with a mesoporous PQD nanocomposite that can prevent ion exchange and increase stability. We mixed green quantum-dot-containing mesoporous silica nanocomposites with red PQDs, which can prevent the anion-exchange effect and increase thermal and photo stability. We applied the new PQD-based LEDs for backlight displays. We also used PQDs in an on-chip LED device. Our white LED device for backlight display passed through a color filter with an NTSC value of 113 % and Rec. 2020 of 85 %.

718 citations


Journal ArticleDOI
TL;DR: Recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion are examined.
Abstract: The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminesce...

703 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 cm−2, a room-temperature output power exceeding 105mW and operation up to 120°C.
Abstract: Reliable, efficient electrically pumped silicon-based lasers would enable full integration of photonic and electronic circuits, but have previously only been realized by wafer bonding. Here, we demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 A cm–2, a room-temperature output power exceeding 105 mW and operation up to 120 °C. Over 3,100 h of continuous-wave operating data have been collected, giving an extrapolated mean time to failure of over 100,158 h. The realization of high-performance quantum dot lasers on silicon is due to the achievement of a low density of threading dislocations on the order of 105 cm−2 in the III–V epilayers by combining a nucleation layer and dislocation filter layers with in situ thermal annealing. These results are a major advance towards reliable and cost-effective silicon-based photonic–electronic integration.

Journal ArticleDOI
TL;DR: ZnCo 2 O4 quantum dots anchored on nitrogen-doped carbon nanotubes (N-CNT) retain the high catalytic activity of ZnCo2 O4 to oxidize water while enabling an efficient oxygen reduction performance thereby combining these desirable features.
Abstract: ZnCo2 O4 quantum dots anchored on nitrogen-doped carbon nanotubes (N-CNT) retain the high catalytic activity of ZnCo2 O4 to oxidize water while enabling an efficient oxygen reduction performance thereby combining these desirable features. These advantages realize a bifunctional catalytic activity for ZnCo2 O4 /N-CNT that can be used in rechargeable zinc-air batteries.

Journal ArticleDOI
TL;DR: The simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules is described.
Abstract: We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.

Journal ArticleDOI
TL;DR: Observations indicate that CsPbX3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.
Abstract: We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX3) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence Mn-doped CsPbCl3 and CsPb(Cl/Br)3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼02% doping concentrations and no signature of phase separation The strong sensitized luminescence from d–d transition of Mn2+ ions upon band-edge excitation of the CsPbX3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn2+ in host CsPbX3 nanocrysta

Journal ArticleDOI
TL;DR: High quality ∼4 nm Cd-, Pb-free Zn-Cu-In-Se alloyed QDs with an absorption onset extending to ∼1000 nm were developed as effective light harvesters to construct quantum dot sensitized solar cells (QDSCs) and remarkably improved photovoltaic performance is derived.
Abstract: The enhancement of power conversion efficiency (PCE) and the development of toxic Cd-, Pb-free quantum dots (QDs) are critical for the prosperity of QD-based solar cells. It is known that the properties (such as light harvesting range, band gap alignment, density of trap state defects, etc.) of QD light harvesters play a crucial effect on the photovoltaic performance of QD based solar cells. Herein, high quality ∼4 nm Cd-, Pb-free Zn–Cu–In–Se alloyed QDs with an absorption onset extending to ∼1000 nm were developed as effective light harvesters to construct quantum dot sensitized solar cells (QDSCs). Due to the small particle size, the developed QD sensitizer can be efficiently immobilized on TiO2 film electrode in less than 0.5 h. An average PCE of 11.66% and a certified PCE of 11.61% have been demonstrated in the QDSCs based on these Zn–Cu–In–Se QDs. The remarkably improved photovoltaic performance for Zn–Cu–In–Se QDSCs vs Cu–In–Se QDSCs (11.66% vs 9.54% in PCE) is mainly derived from the higher conduct...

Journal ArticleDOI
TL;DR: Spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe, but some distinctions are observed including an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Augerlifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems.
Abstract: Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies o...

Journal ArticleDOI
TL;DR: Vacuum Rabi splitting is demonstrated, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs).
Abstract: Strong coupling at the limit of a single quantum emitter has not been reported. Here, Santhosh et al. show a transparency dip is observed in the scattering spectra of individual silver bowties with one to a few quantum dots, placing the plasmonic bowtie-quantum dot constructs close to the strong coupling regime.

Journal ArticleDOI
11 Mar 2016-Science
TL;DR: It is demonstrated that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation.
Abstract: Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies.

Journal ArticleDOI
TL;DR: It is shown that the infiltration of perovskite precursor solutions into the pores of mesoporous silica, followed by drying, leads to the template-assisted formation of perOVskite NCs, and the most striking outcome is very bright PL with quantum efficiencies exceeding 50%.
Abstract: Colloidal lead halide perovskite nanocrystals (NCs) have recently emerged as a novel class of bright emitters with pure colors spanning the entire visible spectral range. Contrary to conventional quantum dots, such as CdSe and InP NCs, perovskite NCs feature unusual, defect-tolerant photophysics. Specifically, surface dangling bonds and intrinsic point defects such as vacancies do not form midgap states, known to trap carriers and thereby quench photoluminescence (PL). Accordingly, perovskite NCs need not be electronically surface-passivated (with, for instance, ligands and wider-gap materials) and do not noticeably suffer from photo-oxidation. Novel opportunities for their preparation therefore can be envisaged. Herein, we show that the infiltration of perovskite precursor solutions into the pores of mesoporous silica, followed by drying, leads to the template-assisted formation of perovskite NCs. The most striking outcome of this simple methodology is very bright PL with quantum efficiencies exceeding 5...

Journal ArticleDOI
TL;DR: These results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility, large diffusion length, and high luminescence quantum yield.
Abstract: Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron–hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm2 V–1 s–1), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal q...

Journal ArticleDOI
TL;DR: This work reviews the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds and a comprehensive overview on toxicity studies concerning all types of quantum dots.
Abstract: We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III–V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors’ view on the perspectives in this field is given.

Journal ArticleDOI
TL;DR: This review will give new insights into how to use different synthetic methods for tuning the structure of DFCDs, understanding the correlation between the doping and properties, and achieving new applications.
Abstract: Doping fluorescent carbon dots (DFCDs) with heteroatoms have recently become of great interest compared to traditional fluorescent materials because it provides a feasible and new way to tune the intrinsic properties of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) to achieve new applications for them in different fields. Since the first report on nitrogen (N) doped GQDs in 2012, more effort is being focused on exploring different procedures for making new types of DFCDs with different heteroatoms. This mini review will summarize recent research progress on DFCDs. It first reviews various doping categories achieved up to now, looking back on the synthesis method and comparing the differences in synthesis approaches between the DFCDs and the undoped ones. Then it focuses on the advances on how the doping affects the optical properties, especially DFCDs doped with N, which have been investigated the most. Finally, different applications of DFCDs involving bio-imaging, sensing, catalysis and photoelectronic devices will be discussed. This review will give new insights into how to use different synthetic methods for tuning the structure of DFCDs, understanding the correlation between the doping and properties, and achieving new applications.

Journal ArticleDOI
TL;DR: The nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells is reported in the strong quantum confinement regime.
Abstract: We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed.

Journal Article
TL;DR: Size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependences are presented.

Journal ArticleDOI
TL;DR: In this article, a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer was proposed.
Abstract: Lead sulphide colloidal nanocrystals offer a solid-state answer for infrared-to-visible upconversion. Optical upconversion via sensitized triplet–triplet exciton annihilation converts incoherent low-energy photons to shorter wavelengths under modest excitation intensities1,2,3. Here, we report a solid-state thin film for infrared-to-visible upconversion that employs lead sulphide colloidal nanocrystals as a sensitizer. Upconversion is achieved from pump wavelengths beyond λ = 1 μm to emission at λ = 612 nm. When excited at λ = 808 nm, two excitons in the sensitizer are converted to one higher-energy state in the emitter at a yield of 1.2 ± 0.2%. Peak efficiency is attained at an absorbed intensity equivalent to less than one sun. We demonstrate that colloidal nanocrystals are an attractive alternative to existing molecular sensitizers, given their small exchange splitting, wide wavelength tunability, broadband infrared absorption, and our transient observations of efficient energy transfer. This solid-state architecture for upconversion may prove useful for enhancing the capabilities of solar cells and photodetectors.

Journal ArticleDOI
TL;DR: For the first time, the synthesis and optical characterization of MA3 Bi2 Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn-based perovSKite nanocrystals is reported.
Abstract: Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut However, the toxicity of lead represents a potential obstacle to their utilization Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties Bismuth, with much lower toxicity than lead, is promising to constitute lead-free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+ Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn-based perovskite nanocrystals Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange

Journal ArticleDOI
TL;DR: In this review, some important applications of gold nanoparticles are explained, including those as sensing, image enhancement, and delivery agents in medicine.
Abstract: Nanoparticles are the simplest form of structures with sizes in the nanometer (nm) range. In principle any collection of atoms bonded together with a structural radius of 100 nm can be considered nano particles. Nanotechnology off ers unique approaches to probe and control a variety of biological and medical processes that occur at nanometer scales, and is expected to have a revolutionary impact on biology and medicine. Among the approaches for exploiting nanotechnology in medicine, nanoparticles off er some unique advantages as sensing, image enhancement, and delivery agents. Several varieties of nanoparticles with biomedical relevance are available including, polymeric nanoparticles, metal nanoparticles, liposomes, micelles, quantum dots, dendrimers, and nanoassemblies. To further the application of nanoparticles in disease diagnosis and therapy, it is important that the systems are biocompatible and capable of being functionalized for recognition of specifi c target sites in the body after systemic administration. In this review, we have explained some important applications of gold nanoparticles.

Journal ArticleDOI
TL;DR: Carbon quantum dots as discussed by the authors are a type of spherical or sphere-like nanoparticles of less than 10 nm in size and have been subsequently named as carbon quantum dots or carbon nanodots.
Abstract: Small carbon nanoparticles are an emerging member of the carbonaceous nanomaterial family and have been subsequently named as “carbon quantum dots” or “carbon nanodots”. Generally, carbon quantum dots are a type of spherical or sphere-like nanoparticles of less than 10 nm in size. Due to their unique properties, for example, size-dependent fluorescence, non-toxicity, biocompatibility, and easy accessibility, carbon quantum dots possess a great many potential applications in a range of fields from chemical sensing and imaging to catalysis and drug delivery, and thus are appealing to a number of researchers in nanoscience and nanotechnology. In this review, we give a brief introduction of the synthesis and fundamental properties of carbon quantum dots, then present their applications in metal ion sensing in detail along with illustrating the related mechanisms, and finally come up with some challenges currently faced and future outlooks for this fascinating carbon material. We hope this review could be helpful for readers who are preparing to join and/or have joined the research field of carbon quantum dots.

Journal ArticleDOI
TL;DR: 'softening' of the core-shell confinement potential strongly suppresses non-radiative Auger processes in charged nanocrystals, with successful non-blinking implementations demonstrated in CdSe-CdS core-thick-shell nanocry crystals and their modifications.
Abstract: Semiconductor nanocrystals offer an enormous diversity of potential device applications, based on their size-tunable photoluminescence, high optical stability and 'bottom-up' chemical approaches to self-assembly. However, the promise of such applications can be seriously limited by photoluminescence intermittency in nanocrystal emission, that is, 'blinking', arising from the escape of either one or both of the photoexcited carriers to the nanocrystal surface. In the first scenario, the remaining nanocrystal charge quenches photoluminescence via non-radiative Auger recombination, whereas for the other, the exciton is thought to be intercepted before thermalization and does not contribute to the photoluminescence. This Review summarizes the current understanding of the mechanisms responsible for nanocrystal blinking kinetics as well as core-shell engineering efforts to control such phenomena. In particular, 'softening' of the core-shell confinement potential strongly suppresses non-radiative Auger processes in charged nanocrystals, with successful non-blinking implementations demonstrated in CdSe-CdS core-thick-shell nanocrystals and their modifications.

PatentDOI
07 Mar 2016-Nature
TL;DR: In this paper, a composite material of a pre-formed crystalline or polycrystalline semiconductor particles embedded in a matrix material was presented, which was selected so that any lattice mismatch between the two lattices does not exceed about 10%.
Abstract: The present disclosure provides a composite material of a pre-formed crystalline or polycrystalline semiconductor particles embedded in a crystalline or polycrystalline perovskite matrix material. The pre-formed crystalline or polycrystalline semiconductor particles and and crystalline or polycrystalline perovskite being selected so that any lattice mismatch between the two lattices does not exceed about 10%. The pre-formed crystalline or polycrystalline semiconductor particles and said crystalline or polycrystalline perovskite matrix material have lattice planes that are substantially aligned.