scispace - formally typeset
Search or ask a question

Showing papers on "Wound healing published in 2011"


Journal ArticleDOI
TL;DR: The macrophage continues to be an attractive therapeutic target, both to reduce fibrosis and scarring, and to improve healing of chronic wounds, as a result of advances in the understanding of this multifunctional cell.
Abstract: The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have many functions in wounds, including host defence, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound and that the influence of these cells on each stage of repair varies with the specific phenotype. Although the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation or fibrosis under certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of nonhealing and poorly healing wounds. As a result of advances in the understanding of this multifunctional cell, the macrophage continues to be an attractive therapeutic target, both to reduce fibrosis and scarring, and to improve healing of chronic wounds.

1,221 citations


Journal ArticleDOI
TL;DR: It is shown that iron overloading of macrophages--as was found to occur in human chronic venous leg ulcers and the mouse model--induced a macrophage population in situ with an unrestrained proinflammatory M1 activation state, which perpetuated inflammation and induced a p16(INK4a)-dependent senescence program in resident fibroblasts, eventually leading to impaired wound healing.
Abstract: Uncontrolled macrophage activation is now considered to be a critical event in the pathogenesis of chronic inflammatory diseases such as atherosclerosis, multiple sclerosis, and chronic venous leg ulcers. However, it is still unclear which environmental cues induce persistent activation of macrophages in vivo and how macrophage-derived effector molecules maintain chronic inflammation and affect resident fibroblasts essential for tissue homeostasis and repair. We used a complementary approach studying human subjects with chronic venous leg ulcers, a model disease for macrophage-driven chronic inflammation, while establishing a mouse model closely reflecting its pathogenesis. Here, we have shown that iron overloading of macrophages — as was found to occur in human chronic venous leg ulcers and the mouse model — induced a macrophage population in situ with an unrestrained proinflammatory M1 activation state. Via enhanced TNF-α and hydroxyl radical release, this macrophage population perpetuated inflammation and induced a p16INK4a-dependent senescence program in resident fibroblasts, eventually leading to impaired wound healing. This study provides insight into the role of what we believe to be a previously undescribed iron-induced macrophage population in vivo. Targeting this population may hold promise for the development of novel therapies for chronic inflammatory diseases such as chronic venous leg ulcers.

879 citations


Journal ArticleDOI
TL;DR: They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth, and participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth.
Abstract: Blood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from a-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.

650 citations


Journal ArticleDOI
TL;DR: This review summarizes macrophage function in skin injury repair, thereby providing more insight in macrophages function in wound healing and possible interventions in this process.

632 citations


Journal ArticleDOI
TL;DR: Targeting components of the ECM as cells respond to injury and inflammatory stimuli holds promise as a means to avoid development of fibrosis and direct the wound-healing process toward reestablishment of a healthy equilibrium.
Abstract: Fibrosis is characterized by excessive accumulation of collagen and other extracellular matrix (ECM) components, and this process has been likened to aberrant wound healing. The early phases of wound healing involve the formation of a provisional ECM containing fibrin, fibrinogen, and fibronectin. Fibroblasts occupy this matrix and proliferate in response to activators elaborated by leukocytes that have migrated into the wound and are retained by the ECM. This coincides with the appearance of the myofibroblast, a specialized form of fibroblast whose differentiation is primarily driven by cytokines, such as transforming growth factor-β (TGF-β), and by mechanical tension. When these signals are reduced, as when TGF-β secretion is reduced, or as in scar shrinkage, myofibroblasts undergo apoptosis, resulting in a collagen-rich, cell-poor scar. Retention of myofibroblasts in fibrosis has been described as the result of imbalanced cytokine signaling, especially with respect to levels of activated TGF-β. ECM components can regulate myofibroblast persistence directly, since this phenotype is dependent on extracellular hyaluronan, tenascin-C, and the fibronectin splice variant containing the “extra domain A,” and also, indirectly, through retention of TGF-β-secreting cells such as eosinophils. Thus the ECM is actively involved in both cellular and extracellular events that lead to fibrosis. Targeting components of the ECM as cells respond to injury and inflammatory stimuli holds promise as a means to avoid development of fibrosis and direct the wound-healing process toward reestablishment of a healthy equilibrium.

599 citations


Journal ArticleDOI
TL;DR: It is shown that proinflammatory T cells inhibit the ability of exogenously added bone marrow mesenchymal stem cells (BMMSCs) to mediate bone repair, and a previously unrecognized role of recipient T cells in BMMSC-based tissue engineering is shown.
Abstract: Bone marrow-derived mesenchymal stem cells (BMMSCs) have so far failed to live up to their potential as a treatment for the repair of large bone defects Songtao Shi and his colleagues now show that this may be due to their apoptosis mediated by resident T cells in the wound as a result of excess IFN-γ and TNF-α signaling They show that reducing the levels of these cytokines, including through the local administration of aspirin, markedly increases the survival of implanted BMMSCs and improves bone wound healing in a mouse model

536 citations


Journal ArticleDOI
TL;DR: Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment, key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.
Abstract: The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.

510 citations


Journal ArticleDOI
28 Oct 2011-Cell
TL;DR: The dynamics of this p63-expressing stem cell in lung regeneration mirrors the parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.

486 citations


Journal ArticleDOI
TL;DR: Current knowledge of the phenotype of wound macrophages, their origin and fate, and the specific macrophage functions that underlie their reparative role in injured tissues are reviewed, including the regulation of the cellular infiltration of the wound and the production of transforming growth factor-β and vascular endothelial growth factor.
Abstract: Recent results call for the reexamination of the phenotype of wound macrophages and their role in tissue repair. These results include the characterization of distinct circulating monocyte populations with temporally restricted capacities to migrate into wounds and the observation that the phenotype of macrophages isolated from murine wounds partially reflects those of their precursor monocytes, changes with time, and does not conform to current macrophage classifications. Moreover, findings in genetically modified mice lacking macrophages have confirmed that these cells are essential to normal wound healing because their depletion results in retarded and abnormal repair. This mini-review focuses on current knowledge of the phenotype of wound macrophages, their origin and fate, and the specific macrophage functions that underlie their reparative role in injured tissues, including the regulation of the cellular infiltration of the wound and the production of transforming growth factor-β and vascular endothelial growth factor.

473 citations


Journal ArticleDOI
TL;DR: Customized dextran-based hydrogel alone, with no additional growth factors, cytokines, or cells, promoted remarkable neovascularization and skin regeneration and may lead to novel treatments for dermal wounds.
Abstract: Neovascularization is a critical determinant of wound-healing outcomes for deep burn injuries. We hypothesize that dextran-based hydrogels can serve as instructive scaffolds to promote neovascularization and skin regeneration in third-degree burn wounds. Dextran hydrogels are soft and pliable, offering opportunities to improve the management of burn wound treatment. We first developed a procedure to treat burn wounds on mice with dextran hydrogels. In this procedure, we followed clinical practice of wound excision to remove full-thickness burned skin, and then covered the wound with the dextran hydrogel and a dressing layer. Our procedure allows the hydrogel to remain intact and securely in place during the entire healing period, thus offering opportunities to simplify the management of burn wound treatment. A 3-week comparative study indicated that dextran hydrogel promoted dermal regeneration with complete skin appendages. The hydrogel scaffold facilitated early inflammatory cell infiltration that led to its rapid degradation, promoting the infiltration of angiogenic cells into the healing wounds. Endothelial cells homed into the hydrogel scaffolds to enable neovascularization by day 7, resulting in an increased blood flow significantly greater than treated and untreated controls. By day 21, burn wounds treated with hydrogel developed a mature epithelial structure with hair follicles and sebaceous glands. After 5 weeks of treatment, the hydrogel scaffolds promoted new hair growth and epidermal morphology and thickness similar to normal mouse skin. Collectively, our evidence shows that customized dextran-based hydrogel alone, with no additional growth factors, cytokines, or cells, promoted remarkable neovascularization and skin regeneration and may lead to novel treatments for dermal wounds.

445 citations


Journal ArticleDOI
TL;DR: Understanding how forces are generated in these cells and knowing exactly how much force they produce may guide the development of optimal protocols for more effective treatment of tissue wounds in clinical settings.

Journal ArticleDOI
TL;DR: Preclinical demonstrations in rodent models show promise for the use of the FN III9-10/12-14–modified matrices in humans to heal chronic wounds and repair bones, and shows potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors.
Abstract: Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored in clinical delivery of growth factors. We present an approach for engineering the cellular microenvironment to greatly accentuate the effects of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) for skin repair, and of bone morphogenetic protein-2 (BMP-2) and PDGF-BB for bone repair. A multifunctional recombinant fragment of fibronectin (FN) was engineered to comprise (i) a factor XIIIa substrate fibrin-binding sequence, (ii) the 9th to 10th type III FN repeat (FN III9-10) containing the major integrin-binding domain, and (iii) the 12th to 14th type III FN repeat (FN III12-14), which binds growth factors promiscuously, including VEGF-A165, PDGF-BB, and BMP-2. We show potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors, but only when FN III9-10 and FN III12-14 are proximally presented in the same polypeptide chain (FN III9-10/12-14). The multifunctional FN III9-10/12-14 greatly enhanced the regenerative effects of the growth factors in vivo in a diabetic mouse model of chronic wounds (primarily through an angiogenic mechanism) and in a rat model of critical-size bone defects (through a mesenchymal stem cell recruitment mechanism) at doses where the growth factors delivered within fibrin only had no significant effects.

Journal ArticleDOI
TL;DR: Nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells that incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells.

Journal ArticleDOI
TL;DR: This view sheds light on several aspects of renal remodeling in kidney disease: (1) renal infection or cell necrosis induces proinflammatory macrophages that exacerbate renal cell damage, (2) uptake of apoptotic cells induces anti-inflammatory 'M2c/suppressor' macrophaging that promote epithelial and vascular repair, and (3) theoretically, fibrolytic macrophage should exist and await investigation.

Journal ArticleDOI
TL;DR: This review considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the dynamic reciprocity framework, while considering specific examples across acute and chronic wound healing.
Abstract: Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction among cells and their surrounding microenvironment. In this review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical, and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but also cellular differentiation, migration, proliferation, and survival during tissue development, including, e.g., embryogenesis, angiogenesis, as well as during pathologic processes including cancer, diabetes, hypertension, and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the DR framework. The implications of applying the principles of DR to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered.

Journal ArticleDOI
TL;DR: It is demonstrated that Nod-like receptor pyrin domain-containing protein 6 (NLRP6) suppresses inflammation and carcinogenesis by regulating tissue repair and the integrity of the epithelial barrier is preserved by NLRP6 that may be manipulated to develop drugs capable of preventing adenoma formation in inflammatory bowel diseases.
Abstract: The colonic epithelium self-renews every 3 to 5 d, but our understanding of the underlying processes preserving wound healing from carcinogenesis remains incomplete. Here, we demonstrate that Nod-like receptor pyrin domain-containing protein 6 (NLRP6) suppresses inflammation and carcinogenesis by regulating tissue repair. NLRP6 was primarily produced by myofibroblasts within the stem-cell niche in the colon. Although NLRP6 expression was lowered in diseased colon, NLRP6-deficient mice were highly susceptible to experimental colitis. Upon injury, NLRP6 deficiency deregulated regeneration of the colonic mucosa and processes of epithelial proliferation and migration. Consistently, absence of NLRP6 accelerated colitis-associated tumor growth in mice. A gene-ontology analysis on a whole-genome expression profiling revealed a link between NLRP6 and self-renewal of the epithelium. Collectively, the integrity of the epithelial barrier is preserved by NLRP6 that may be manipulated to develop drugs capable of preventing adenoma formation in inflammatory bowel diseases.

Journal ArticleDOI
Chunlei Nie1, Daping Yang1, Jin Xu1, Zhenxing Si1, Xiaoming Jin1, Jiewu Zhang1 
TL;DR: The results demonstrate that ASC therapy could accelerate wound healing through differentiation and vasculogenesis and might represent a novel therapeutic approach in cutaneous wounds.

Journal ArticleDOI
Ye Yang1, Tian Xia, Wei Zhi1, Li Wei, Jie Weng1, Cong Zhang1, Xiaohong Li1 
TL;DR: The potential use of bFGF-loaded electrospun fibrous mats to rapidly restore the structural and functional properties of wounded skin for patients with diabetic mellitus is demonstrated.

OtherDOI
TL;DR: The process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.
Abstract: Skeletal muscle continuously adapts to changes in its mechanical environment through modifications in gene expression and protein stability that affect its physiological function and mass. However, mechanical stresses commonly exceed the parameters that induce adaptations, producing instead acute injury. Furthermore, the relatively superficial location of many muscles in the body leaves them further vulnerable to acute injuries by exposure to extreme temperatures, contusions, lacerations or toxins. In this article, the molecular, cellular, and mechanical factors that underlie muscle injury and the capacity of muscle to repair and regenerate are presented. Evidence shows that muscle injuries that are caused by eccentric contractions result from direct mechanical damage to myofibrils. However, muscle pathology following other acute injuries is largely attributable to damage to the muscle cell membrane. Many feaures in the injury-repair-regeneration cascade relate to the unregulated influx of calcium through membrane lesions, including: (i) activation of proteases and hydrolases that contribute muscle damage, (ii) activation of enzymes that drive the production of mitogens and motogens for muscle and immune cells involved in injury and repair, and (iii) enabling protein-protein interactions that promote membrane repair. Evidence is also presented to show that the myogenic program that is activated by acute muscle injury and the inflammatory process that follows are highly coordinated, with myeloid cells playing a central role in modulating repair and regeneration. The early-invading, proinflammatory M1 macrophages remove debris caused by injury and express Th1 cytokines that play key roles in regulating the proliferation, migration, and differentiation of satellite cells. The subsequent invasion by anti-inflammatory, M2 macrophages promotes tissue repair and attenuates inflammation. Although this system provides an effective mechanism for muscle repair and regeneration following acute injury, it is dysregulated in chronic injuries. In this article, the process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury, to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.

Journal ArticleDOI
TL;DR: LIFT-derived cell seeding pattern definitely modified growth characteristics of co-cultured HUVEC and hMSC leading to increased vessel formation and found significant functional improvement of infarcted hearts following transplantation of a LIFT-tissue engineered cardiac patch.

Journal ArticleDOI
TL;DR: In skin, cell- ECM interactions influence normal homeostasis, aging, wound healing, and disease, and strategies for manipulating cell-ECM interactions to repair skin defects and intervene in a variety of skin diseases hold promise for the future.
Abstract: Mammalian skin comprises a multi-layered epithelium, the epidermis, and an underlying connective tissue, the dermis. The epidermal extracellular matrix is a basement membrane, whereas the dermal ECM comprises fibrillar collagens and associated proteins. There is considerable heterogeneity in ECM composition within both epidermis and dermis. The functional significance of this extends beyond cell adhesion to a range of cell autonomous and nonautonomous processes, including control of epidermal stem cell fate. In skin, cell-ECM interactions influence normal homeostasis, aging, wound healing, and disease. Disturbed integrin and ECM signaling contributes to both tumor formation and fibrosis. Strategies for manipulating cell-ECM interactions to repair skin defects and intervene in a variety of skin diseases hold promise for the future.

Journal ArticleDOI
TL;DR: In this paper, the first layer-by-layer (LbL) films capable of microgram-scale release of the biologic Bone Morphogenetic Protein 2 (BMP-2), which is capable of directing the host tissue response to create bone from native progenitor cells.

Journal ArticleDOI
TL;DR: APRP and aPPP promote tissue remodelling in aged skin and may be used as adjuvant treatment to lasers for skin rejuvenation in cosmetic dermatology.
Abstract: Background: Autologous platelet-rich plasma has attracted attention in various medical fields recently, including orthopedic, plastic, and dental surgeries and dermatology for its wound healing ability. Further, it has been used clinically in mesotherapy for skin rejuvenation. Objective: In this study, the effects of activated platelet-rich plasma (aPRP) and activated platelet-poor plasma (aPPP) have been investigated on the remodelling of the extracellular matrix, a process that requires activation of dermal fibroblasts, which is essential for rejuvenation of aged skin. Methods: Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were prepared using a double-spin method and then activated with thrombin and calcium chloride. The proliferative effects of aPRP and aPPP were measured by [ 3 H]thymidine incorporation assay, and their effects on matrix protein synthesis were assessed by quantifying levels of procollagen type I carboxy-terminal peptide (PIP) by enzyme-linked immunosorbent assay (ELISA). The production of collagen and matrix metalloproteinases (MMP) was studied by Western blotting and reverse transcriptase-polymerase chain reaction. Results: Platelet numbers in PRP increased to 9.4-fold over baseline values. aPRP and aPPP both stimulated cell proliferation, with peak proliferation occurring in cells grown in 5% aPRP. Levels of PIP were highest in cells grown in the presence of 5% aPRP. Additionally, aPRP and aPPP increased the expression of type I collagen, MMP-1 protein, and mRNA in human dermal fibroblasts. Conclusion: aPRP and aPPP promote tissue remodelling in aged skin and may be used as adjuvant treatment to lasers for skin rejuvenation in cosmetic dermatology. (Ann Dermatol 23(4) 424∼431, 2011)

Journal ArticleDOI
TL;DR: The interactions among fibroblasts, macrophages, and CD4 T cells likely play general and critical roles in initiating, perpetuating, and resolving fibrosis in both experimental and clinical conditions.
Abstract: Dysregulated wound healing leads to fibrosis, whereby fibroblasts synthesize excess extracellular matrix and scarring impairs proper organ function. Although fibrotic diseases arise from diverse causes and display heterogeneous features, fibrosis commonly associates with chronic inflammation. Recent discoveries reinforce the idea that communication between fibroblasts, macrophages, and CD4 T cells integrates the processes of wound healing and host defense. Signals between macrophages and fibroblasts can exacerbate, suppress, or reverse fibrosis. Fibroblasts and macrophages are activated by T cells, but their activation also engages negative feedback loops that reduce fibrosis by restraining the immune response, particularly when the Th2 cytokine IL-13 contributes to pathology. Thus the interactions among fibroblasts, macrophages, and CD4 T cells likely play general and critical roles in initiating, perpetuating, and resolving fibrosis in both experimental and clinical conditions.

Journal ArticleDOI
TL;DR: It is shown for the first time that after subacute transplantation into the ischemic brain of human central nervous system stem cells grown as neurospheres, the stem cell‐secreted factor, human vascular endothelial growth factor (hVEGF), is necessary for cell‐induced functional recovery.
Abstract: Cell transplantation offers a novel therapeutic strategy for stroke; however, how transplanted cells function in vivo is poorly understood. We show for the first time that after subacute transplantation into the ischemic brain of human central nervous system stem cells grown as neurospheres (hCNS-SCns), the stem cell-secreted factor, human vascular endothelial growth factor (hVEGF), is necessary for cell-induced functional recovery. We correlate this functional recovery to hVEGF-induced effects on the host brain including multiple facets of vascular repair and its unexpected suppression of the inflammatory response. We found that transplanted hCNS-SCns affected multiple parameters in the brain with different kinetics: early improvement in blood-brain barrier integrity and suppression of inflammation was followed by a delayed spatiotemporal regulated increase in neovascularization. These events coincided with a bimodal pattern of functional recovery, with, an early recovery independent of neovascularization, and a delayed hVEGF-dependent recovery coincident with neovascularization. Therefore, cell transplantation therapy offers an exciting multimodal strategy for brain repair in stroke and potentially other disorders with a vascular or inflammatory component.

Journal ArticleDOI
TL;DR: The wound healing efficacies of various herbal extracts have been evaluated in excision, incision, dead space, and burn wound models.
Abstract: Wounds are the result of injuries to the skin that disrupt the other soft tissue. Healing of a wound is a complex and protracted process of tissue repair and remodeling in response to injury. Various plant products have been used in treatment of wounds over the years. Wound healing herbal extracts promote blood clotting, fight infection, and accelerate the healing of wounds. Phytoconstituents derived from plants need to be identified and screened for antimicrobial activity for management of wounds. The in vitro assays are useful, quick, and relatively inexpensive. Small animals provide a multitude of model choices for various human wound conditions. The study must be conducted after obtaining approval of the Ethics Committee and according to the guidelines for care and use of animals. The prepared formulations of herbal extract can be evaluated by various physicopharmaceutical parameters. The wound healing efficacies of various herbal extracts have been evaluated in excision, incision, dead space, and burn wound models. In vitro and in vivo assays are stepping stones to well-controlled clinical trials of herbal extracts.

Journal ArticleDOI
01 Nov 2011-Cytokine
TL;DR: The findings are consistent with the hypothesis that dysregulation of Mo/Mp phenotypes contributes to impaired healing of diabetic wounds, and may have resulted from elevated levels of pro-inflammatory interleukin-1β and interferon-γ and reduced levels of anti-inflammatoryinterleuk in the wound environment.

Journal ArticleDOI
TL;DR: The pursuit of SDF-1-related regenerative medicine has already begun and it is thus conceivable that its usage in the clinical setting will be a reality in the near future.
Abstract: Introduction: Stromal cell-derived factor-1α (SDF-1) is a chemokine that plays a major role in cell trafficking and homing of CD34+ stem cells. Studies employing SDF-1/CXCR4 have demonstrated its therapeutic potential in tissue engineering. During injury, cells from the injured organ highly express SDF-1, which causes an elevation of localized SDF-1 levels. This leads to recruitment and retention of circulating CD34+ progenitor cells at the injury site via chemotactic attraction toward a gradient of SDF-1. The general approaches for SDF-1 introduction in tissue engineering are direct protein incorporation into scaffolds and transplantation of SDF-1-overexpressing cells and both methods are successful in improving the regeneration of the damaged tissue/organ. Areas covered: The mechanisms of SDF-1-mediated homing via CXCR4 receptor and the success of SDF-1-based medical applications in mesenchymal stem cell (MSC) homing as well as areas such as therapeutic angiogenesis, wound healing and neuronal and liver...

Journal ArticleDOI
TL;DR: Key events are the activation and transformation of quiescent hepatic stellate cells into myofibroblast-like cells with the subsequent up-regulation of proteins such as α-smooth muscle actin, interstitial collagens, matrix metalloproteinases, tissue inhibitor of metallofiltration, and proteoglycans.

Journal ArticleDOI
TL;DR: The in situ gel-forming system can be a promising injectable gel-type wound dressing that induced better defined formation of neo-epithelium and thicker granulation, which is closer to the original epithelial tissue.