scispace - formally typeset
Search or ask a question

Showing papers by "Daniel McDonald published in 2017"


Journal ArticleDOI
01 Nov 2017-Nature
TL;DR: A meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project is presented, creating both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.
Abstract: Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.

1,676 citations


Journal ArticleDOI
21 Apr 2017
TL;DR: A novel sub-operational-taxonomic-unit (sOTU) approach that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms, Deblur, which substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity.
Abstract: High-throughput sequencing of 16S ribosomal RNA gene amplicons has facilitated understanding of complex microbial communities, but the inherent noise in PCR and DNA sequencing limits differentiation of closely related bacteria. Although many scientific questions can be addressed with broad taxonomic profiles, clinical, food safety, and some ecological applications require higher specificity. Here we introduce a novel sub-operational-taxonomic-unit (sOTU) approach, Deblur, that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms. Deblur substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity. Using simulations, mock mixtures, and real data sets, we detected closely related bacterial sequences with single nucleotide differences while removing false positives and maintaining stability in detection, suggesting that Deblur is limited only by read length and diversity within the amplicon sequences. Because Deblur operates on a per-sample level, it scales to modern data sets and meta-analyses. To highlight Deblur's ability to integrate data sets, we include an interactive exploration of its application to multiple distinct sequencing rounds of the American Gut Project. Deblur is open source under the Berkeley Software Distribution (BSD) license, easily installable, and downloadable from https://github.com/biocore/deblur. IMPORTANCE Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time.

1,181 citations


Journal ArticleDOI
20 Sep 2017-Nature
TL;DR: A second wave of data from the National Institutes of Health Human Microbiome Project is introduced, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple time points in 265 individuals to provide new characterizations of microbiome personalization.
Abstract: The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of microbiome-related disease, diversity, biogeography, and molecular function. The National Institutes of Health Human Microbiome Project has provided one of the broadest such characterizations so far. Here we introduce a second wave of data from the study, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple time points in 265 individuals. We applied updated profiling and assembly methods to provide new characterizations of microbiome personalization. Strain identification revealed subspecies clades specific to body sites; it also quantified species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of baseline human microbial diversity and enables an understanding of personalized microbiome function and dynamics.

869 citations


Journal ArticleDOI
TL;DR: There was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease, and these results will help guide therapies that will redirect the Gut microbiome towards a healthy state and maintain remission in IBD.
Abstract: Inflammatory bowel disease (IBD) is characterized by flares of inflammation with a periodic need for increased medication and sometimes even surgery. The aetiology of IBD is partly attributed to a deregulated immune response to gut microbiome dysbiosis. Cross-sectional studies have revealed microbial signatures for different IBD subtypes, including ulcerative colitis, colonic Crohn's disease and ileal Crohn's disease. Although IBD is dynamic, microbiome studies have primarily focused on single time points or a few individuals. Here, we dissect the long-term dynamic behaviour of the gut microbiome in IBD and differentiate this from normal variation. Microbiomes of IBD subjects fluctuate more than those of healthy individuals, based on deviation from a newly defined healthy plane (HP). Ileal Crohn's disease subjects deviated most from the HP, especially subjects with surgical resection. Intriguingly, the microbiomes of some IBD subjects periodically visited the HP then deviated away from it. Inflammation was not directly correlated with distance to the healthy plane, but there was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease. These results will help guide therapies that will redirect the gut microbiome towards a healthy state and maintain remission in IBD.

750 citations


Journal ArticleDOI
TL;DR: The results show that measurement of personal data clouds over time can improve the understanding of health and disease, including early transitions to disease states.
Abstract: Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine). Finally, behavioral coaching informed by personal data helped participants to improve clinical biomarkers. Our results show that measurement of personal data clouds over time can improve our understanding of health and disease, including early transitions to disease states.

322 citations


Journal ArticleDOI
TL;DR: This review describes how new generations of sequencing technology, analytical advances coupled to new software capabilities, and the integration of animal model data have led to new discoveries in microbiome research.
Abstract: Over the past few years, microbiome research has dramatically reshaped our understanding of human biology. New insights range from an enhanced understanding of how microbes mediate digestion and disease processes (e.g., in inflammatory bowel disease) to surprising associations with Parkinson's disease, autism, and depression. In this review, we describe how new generations of sequencing technology, analytical advances coupled to new software capabilities, and the integration of animal model data have led to these new discoveries. We also discuss the prospects for integrating studies of the microbiome, metabolome, and immune system, with the goal of elucidating mechanisms that govern their interactions. This systems-level understanding will change how we think about ourselves as organisms.

253 citations


Journal ArticleDOI
28 Feb 2017
TL;DR: It is shown that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum, and have the potential to reshape how future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples are carried out.
Abstract: Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the microbial taxa that differentiate these samples can be challenging. These issues stem from the compositional nature of 16S rRNA gene data (or, more generally, taxon or functional gene data); the changes in the relative abundance of one taxon influence the apparent abundances of the others. Here we acknowledge that inferring properties of individual bacteria is a difficult problem and instead introduce the concept of balances to infer meaningful properties of subcommunities, rather than properties of individual species. We show that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum. These techniques have the potential to reshape how we carry out future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples. IMPORTANCE By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss. Author Video: An author video summary of this article is available.

240 citations


Journal ArticleDOI
TL;DR: A new species-specific identifiers that refer to unique RNA sequences within a context of single species are created in RNAcentral, a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNAs resources and provides a single entry point for accessing ncRNA sequences of all nc RNA types from all organisms.
Abstract: RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.

160 citations


Journal ArticleDOI
21 Apr 2017
TL;DR: A meta-analysis using several different microbiome sample storage condition studies is performed, showing consistent trends in which specific bacteria grew (i.e., “bloomed”) at room temperature, and introducing a procedure for removing the sequences that most distort analyses.
Abstract: The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria, grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., "bloomed") at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called "Deblur" to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has been shown not to obscure physiologically relevant microbiome differences between comparison groups, there are still changes in specific bacterial taxa, notably, in members of the class Gammaproteobacteria, that can make microbiome profiles difficult to interpret. Here we identify the most problematic taxa and show that removing sequences from just a few fast-growing taxa is sufficient to correct microbiome profiles.

76 citations


Journal ArticleDOI
TL;DR: EMPeror is improved to create interactive animations that connect successive samples to highlight patterns over time, and to visualize ordinations derived from comparisons of these microbiome communities.

66 citations


Journal ArticleDOI
12 Oct 2017-Nature
TL;DR: This corrects the article to say that the author of the paper was a post-graduate student at the Massachusetts Institute of Technology (MIT) when he wrote the paper, not a scientist.
Abstract: Nature 550, 61–66 (2017); doi:10.1038/nature23889 This Article should have contained an associated Creative Commons statement in the Author Information section. This has been corrected in the online versions of the Article.