scispace - formally typeset
Search or ask a question

Showing papers by "Erwin G. Van Meir published in 2017"


Journal ArticleDOI
Florence M.G. Cavalli1, Marc Remke2, Marc Remke1, Marc Remke3, Ladislav Rampášek1, John Peacock1, David Shih1, Betty Luu1, Livia Garzia1, Jonathon Torchia1, Carolina Nor1, A. Sorana Morrissy1, Sameer Agnihotri4, Yuan Yao Thompson1, Claudia M. Kuzan-Fischer1, Hamza Farooq1, Keren Isaev5, Keren Isaev1, Craig Daniels1, Byung Kyu Cho6, Seung-Ki Kim6, Kyu-Chang Wang6, Ji Yeoun Lee6, Wiesława Grajkowska7, Marta Perek-Polnik7, Alexandre Vasiljevic, Cécile Faure-Conter, Anne Jouvet8, Caterina Giannini9, Amulya A. Nageswara Rao9, Kay Ka Wai Li10, Ho Keung Ng10, Charles G. Eberhart11, Ian F. Pollack4, Ronald L. Hamilton4, G. Yancey Gillespie12, James M. Olson13, James M. Olson14, Sarah Leary13, William A. Weiss15, Boleslaw Lach16, Boleslaw Lach17, Lola B. Chambless18, Reid C. Thompson18, Michael K. Cooper18, Rajeev Vibhakar19, Peter Hauser20, Marie Lise C. van Veelen21, Johan M. Kros21, Pim J. French21, Young Shin Ra22, Toshihiro Kumabe23, Enrique López-Aguilar24, Karel Zitterbart25, Jaroslav Sterba25, Gaetano Finocchiaro, Maura Massimino, Erwin G. Van Meir26, Satoru Osuka26, Tomoko Shofuda, Almos Klekner27, Massimo Zollo28, Jeffrey R. Leonard29, Joshua B. Rubin29, Nada Jabado30, Steffen Albrecht31, Steffen Albrecht30, Jaume Mora, Timothy E. Van Meter32, Shin Jung33, Andrew S. Moore34, Andrew R. Hallahan34, Jennifer A. Chan35, Daniela Pretti da Cunha Tirapelli36, Carlos Gilberto Carlotti36, Maryam Fouladi37, José Pimentel, Claudia C. Faria, Ali G. Saad38, Luca Massimi39, Linda M. Liau40, Helen Wheeler41, Hideo Nakamura42, Samer K. Elbabaa43, Mario Perezpeña-Diazconti, Fernando Chico Ponce de León, Shenandoah Robinson44, Michal Zapotocky1, Alvaro Lassaletta1, Annie Huang1, Cynthia Hawkins1, Uri Tabori1, Eric Bouffet1, Ute Bartels1, Peter B. Dirks1, James T. Rutka1, Gary D. Bader1, Jüri Reimand5, Jüri Reimand1, Anna Goldenberg1, Vijay Ramaswamy1, Michael D. Taylor1 
TL;DR: Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes.

737 citations


Journal ArticleDOI
TL;DR: Genetic alterations and genomic reprogramming underlie the innate and adaptive resistance of RISC cells, and both need to be targeted to prevent glioblastoma recurrence.
Abstract: Glioblastoma is the most common and lethal primary malignant brain tumor in adults. Patients die from recurrent tumors that have become resistant to therapy. New strategies are needed to design future therapies that target resistant cells. Recent genomic studies have unveiled the complexity of tumor heterogeneity in glioblastoma and provide new insights into the genomic landscape of tumor cells that survive and initiate tumor recurrence. Resistant cells also co-opt developmental pathways and display stem-like properties; hence we propose to name them recurrence-initiating stem-like cancer (RISC) cells. Genetic alterations and genomic reprogramming underlie the innate and adaptive resistance of RISC cells, and both need to be targeted to prevent glioblastoma recurrence.

331 citations


Journal ArticleDOI
TL;DR: A new role for BAI1 is uncovered in facilitating macrophage anti-viral responses and it is shown that arming oHSV with antiangiogenic Vstat120 also shields them from inflammatory macrophages antiviral response, without reducing safety.
Abstract: Purpose: Brain angiogenesis inhibitor (BAI1) facilitates phagocytosis and bacterial pathogen clearance by macrophages; however, its role in viral infections is unknown. Here, we examined the role of BAI1, and its N-terminal cleavage fragment (Vstat120) in antiviral macrophage responses to oncolytic herpes simplex virus (oHSV).Experimental Design: Changes in infiltration and activation of monocytic and microglial cells after treatment of glioma-bearing mice brains with a control (rHSVQ1) or Vstat120-expressing (RAMBO) oHSV was analyzed using flow cytometry. Co-culture of infected glioma cells with macrophages or microglia was used to examine antiviral signaling. Cytokine array gene expression and Ingenuity Pathway Analysis (IPA) helped evaluate changes in macrophage signaling in response to viral infection. TNFα-blocking antibodies and macrophages derived from Bai1-/- mice were used.Results: RAMBO treatment of mice reduced recruitment and activation of macrophages/microglia in mice with brain tumors, and showed increased virus replication compared with rHSVQ1. Cytokine gene expression array revealed that RAMBO significantly altered the macrophage inflammatory response to infected glioma cells via altered secretion of TNFα. Furthermore, we showed that BAI1 mediated macrophage TNFα induction in response to oHSV therapy. Intracranial inoculation of wild-type/RAMBO virus in Bai1-/- or wild-type non-tumor-bearing mice revealed the safety of this approach.Conclusions: We have uncovered a new role for BAI1 in facilitating macrophage anti-viral responses. We show that arming oHSV with antiangiogenic Vstat120 also shields them from inflammatory macrophage antiviral response, without reducing safety. Clin Cancer Res; 23(7); 1809-19. ©2016 AACR.

26 citations


Journal ArticleDOI
TL;DR: Neutrophils loaded with cationic liposomal paclitaxel migrate across the blood/brain barrier to deliver chemotherapeutic nanoparticles in the inflamed post-surgical tumour margin.
Abstract: Neutrophils loaded with cationic liposomal paclitaxel migrate across the blood/brain barrier to deliver chemotherapeutic nanoparticles in the inflamed post-surgical tumour margin.

16 citations


Journal ArticleDOI
TL;DR: The results demonstrate the usefulness of viral metagenomics to detect previously unknown exogenous virus in human brain tumors and suggest that active viral infections are rare events in brain tumors, but support a follow-up larger scale study to quantify their frequency in different brain tumor subtypes.
Abstract: // Terry Fei Fan Ng 1, 2, 3, 5 , Jennifer A. Dill 3 , Alvin C. Camus 3 , Eric Delwart 1, 2, * and Erwin G. Van Meir 4, * 1 Blood Systems Research Institute, San Francisco, California, USA 2 Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA 3 Department of Pathology, University of Georgia, Athens, Georgia, USA 4 Departments of Neurosurgery and Hematology & Medical Oncology, Winship Cancer Institute and School of Medicine, Emory University, Atlanta, Georgia, USA 5 Current/Present address: DVD, NCIRD, Centers for Disease Control and Prevention, Atlanta, Georgia, USA * Co-senior authors Correspondence to: Terry Fei Fan Ng, email: ylz9@cdc.gov Keywords: brain tumor; neuro-oncology; anellovirus; metagenomics; metastasis Received: September 19, 2017 Accepted: October 25, 2017 Published: November 11, 2017 ABSTRACT The role of viral infections in the etiology of brain cancer remains uncertain. Prior studies mostly focused on transcriptome or viral DNA integrated in tumor cells. To investigate for the presence of viral particles, we performed metagenomics sequencing on viral capsid-protected nucleic acids from 12 primary and 8 metastatic human brain tumors. One brain tumor metastasized from a skin melanoma harbored two new human anellovirus species, Torque teno mini virus Emory1 (TTMV Emory1) and Emory2 (TTMV Emory2), while the remaining 19 samples did not reveal any exogenous viral sequences. Their genomes share 63-67% identity with other TTMVs, and phylogenetic clustering supports their classification within the Betatorquevirus genus. This is the first identification of betatorqueviruses in brain tumors. The viral DNA was in its expected non-integrated circular form, and it is unclear if the viruses contributed to tumor formation. Whether the viruses originated from blood, or the primary skin tumor could not be ascertained. Overall, our results demonstrate the usefulness of viral metagenomics to detect previously unknown exogenous virus in human brain tumors. They further suggest that active viral infections are rare events in brain tumors, but support a follow-up larger scale study to quantify their frequency in different brain tumor subtypes.

15 citations


Journal ArticleDOI
TL;DR: In orthotopic triple-negative breast cancer and subcutaneous lung cancer mouse models, this arylsulfonamide robustly suppresses primary tumor growth, inhibits the formation of distant metastases to the lung, and extends mouse survival while being very well tolerated.
Abstract: Neoplastic cells display reprogrammed metabolism due to the heightened energetic demands and the need for biomass synthesis of a growing tumor. Targeting metabolic vulnerabilities is thus an important goal for cancer therapy. Here, we describe a novel small-molecule arylsulfonamide (N-cyclobutyl-N-((2,2-dimethyl-2H-pyrano[3,2-b]pyridin-6-yl)methyl)-3,4-dimethoxybenzenesulfonamide) that exerts potent cytotoxicity and energetic stress on tumor cells while largely sparing non-cancerous human cells. In tumor cells, it stimulates glycolysis and accelerates glucose consumption. Consequently, intracellular ATP levels plummet, triggering activation of AMP-activated protein kinase (AMPK), and diminishing the mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1 (HIF-1) signaling. In orthotopic triple-negative breast cancer and subcutaneous lung cancer mouse models, this arylsulfonamide robustly suppresses primary tumor growth, inhibits the formation of distant metastases to the lung, and extends mouse survival while being very well tolerated. These therapeutic effects are further potentiated by co-administration of 2-deoxy-D-glucose (2-DG), a glucose analog and glycolysis inhibitor. Collectively, our findings provide preclinical proof of concept for the further development of this arylsulfonamide in combination with 2-DG towards cancer treatment.

9 citations


Journal ArticleDOI
TL;DR: It is found that replacing the benzopyran group of KCN1 with a phenyl group with a morpholinomethyl moiety at the para positions had minimal effect on potency and improved the water solubility of two new compounds by more than 10-fold compared toKCN1, the lead compound.
Abstract: While progress has been made in treating cancer, cytotoxic chemotherapeutic agents are still the most widely used drugs and are associated with severe side-effects. Drugs that target unique molecular signalling pathways are needed for treating cancer with low or no intrinsic toxicity to normal cells. Our goal is to target hypoxic tumours and specifically the hypoxia inducible factor (HIF) pathway for the development of new cancer therapies. To this end, we have previously developed benzopyran-based HIF-1 inhibitors such as arylsulfonamide KCN1. However, KCN1 and its earlier analogs have poor water solubility, which hamper their applications. Herein, we describe a series of KCN1 analogs that incorporate a morpholine moiety at various positions. We found that replacing the benzopyran group of KCN1 with a phenyl group with a morpholinomethyl moiety at the para positions had minimal effect on potency and improved the water solubility of two new compounds by more than 10-fold compared to KCN1, the lead compound.

9 citations


Journal ArticleDOI
TL;DR: A library of sulfonamide analogs has been designed and synthesized with the intent of examining the SAR of this series of compounds and improving potency and physicochemical properties as compared with lead compounds 1 and 2.

8 citations


Journal ArticleDOI
05 Sep 2017
TL;DR: The structural integrity of the final recombinant p300-CH1 has been verified to be optimal using onedimensional 1H NMR spectroscopy and circular dichroism, resulting in a high yield of optimally folded protein that is suitable for structural NMR studies.
Abstract: The transcription factor Hypoxia-Inducible Factor (HIF) complexes with the coactivator p300, activating the hypoxia response pathway and allowing tumors to grow. The CH1 and CAD domains of each respective protein form the interface between p300 and HIF. Small molecule compounds are in development that target and inhibit HIF/p300 complex formation, with the goal of reducing tumor growth. High resolution NMR spectroscopy is necessary to study ligand interaction with p300-CH1, and purifying high quantities of properly folded p300-CH1 is needed for pursuing structural and biophysical studies. p300-CH1 has 3 zinc fingers and 9 cysteine residues, posing challenges associated with reagent compatibility and protein oxidation. A protocol has been developed to overcome such issues by incorporating zinc during expression and streamlining the purification time, resulting in a high yield of optimally folded protein (120 mg per 4 L expression media) that is suitable for structural NMR studies. The structural integrity of the final recombinant p300-CH1 has been verified to be optimal using onedimensional 1H NMR spectroscopy and circular dichroism. This protocol is applicable for the purification of other zinc finger containing proteins.

2 citations