scispace - formally typeset
Search or ask a question

Showing papers by "Fabio Benfenati published in 2018"


Journal ArticleDOI
02 Nov 2018-ACS Nano
TL;DR: In this paper, the authors discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBM using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that disentangle the structure-activity relationships for this class of materials.
Abstract: Graphene and its derivatives are heralded as ‘miracle’ materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.

397 citations


Journal ArticleDOI
01 Apr 2018-Brain
TL;DR: It is shown that PR RT2 is a negative modulator of voltage-dependent NaV1.2/1.6 channels, which may contribute to the paroxysmal nature of PRRT2-linked diseases.
Abstract: See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.

85 citations


Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in the use of graphene materials to engineer three-dimensional scaffolds to drive neuronal growth and regeneration in vivo, and the possibility of using graphene as a component of hybrid composites/multi-layer organic electronics devices.
Abstract: The scientific community has witnessed an exponential increase in the applications of graphene and graphene-based materials in a wide range of fields, from engineering to electronics to biotechnologies and biomedical applications. For what concerns neuroscience, the interest raised by these materials is two-fold. On one side, nanosheets made of graphene or graphene derivatives (graphene oxide, or its reduced form) can be used as carriers for drug delivery. Here, an important aspect is to evaluate their toxicity, which strongly depends on flake composition, chemical functionalization and dimensions. On the other side, graphene can be exploited as a substrate for tissue engineering. In this case, conductivity is probably the most relevant amongst the various properties of the different graphene materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation, which holds a great potential in regenerative medicine. In this review, we try to give a comprehensive view of the accomplishments and new challenges of the field, as well as which in our view are the most exciting directions to take in the immediate future. These include the need to engineer multifunctional nanoparticles (NPs) able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs. We describe the state-of-the-art in the use of graphene materials to engineer three-dimensional scaffolds to drive neuronal growth and regeneration in vivo, and the possibility of using graphene as a component of hybrid composites/multi-layer organic electronics devices. Last but not least, we address the need of an accurate theoretical modeling of the interface between graphene and biological material, by modeling the interaction of graphene with proteins and cell membranes at the nanoscale, and describing the physical mechanism(s) of charge transfer by which the various graphene materials can influence the excitability and physiology of neural cells.

83 citations


Journal ArticleDOI
TL;DR: Thiophene-based materials have allowed the development of a new generation of fully organic light actuators for in vivo applications that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system.
Abstract: Artificially enhancing light sensitivity in living cells allows control of neuronal paths or vital functions avoiding the wiring associated with the use of stimulation electrodes. Many possible strategies can be adopted for reaching this goal, including the direct photoexcitation of biological matter, the genetic modification of cells or the use of opto-bio interfaces. In this review we describe different light actuators based on both inorganic and organic semiconductors, from planar abiotic/biotic interfaces to nanoparticles, that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system. In particular, we will focus on the application of thiophene-based materials which, thanks to their unique chemical–physical properties, geometrical adaptability, great biocompatibility and stability, have allowed the development of a new generation of fully organic light actuators for in vivo applications.

62 citations


Journal ArticleDOI
01 Jun 2018-Brain
TL;DR: Functional and expression studies demonstrate impaired lysosomal homeostasis, defective neurite elongation and loss of excitatory inputs in cultured neurons.
Abstract: V-type proton (H+) ATPase (v-ATPase) is a multi-subunit proton pump that regulates pH homeostasis in all eukaryotic cells; in neurons, v-ATPase plays additional and unique roles in synapse function. Through whole exome sequencing, we identified de novo heterozygous mutations (p.Pro27Arg, p.Asp100Tyr, p.Asp349Asn, p.Asp371Gly) in ATP6V1A, encoding the A subunit of v-ATPase, in four patients with developmental encephalopathy with epilepsy. Early manifestations, observed in all patients, were developmental delay and febrile seizures, evolving to encephalopathy with profound delay, hypotonic/dyskinetic quadriparesis and intractable multiple seizure types in two patients (p.Pro27Arg, p.Asp100Tyr), and to moderate delay with milder epilepsy in the other two (p.Asp349Asn, p.Asp371Gly). Modelling performed on the available prokaryotic and eukaryotic structures of v-ATPase predicted p.Pro27Arg to perturb subunit interaction, p.Asp100Tyr to cause steric hindrance and destabilize protein folding, p.Asp349Asn to affect the catalytic function and p.Asp371Gly to impair the rotation process, necessary for proton transport. We addressed the impact of p.Asp349Asn and p.Asp100Tyr mutations on ATP6V1A expression and function by analysing ATP6V1A-overexpressing HEK293T cells and patients' lymphoblasts. The p.Asp100Tyr mutant was characterized by reduced expression due to increased degradation. Conversely, no decrease in expression and clearance was observed for p.Asp349Asn. In HEK293T cells overexpressing either pathogenic or control variants, p.Asp349Asn significantly increased LysoTracker® fluorescence with no effects on EEA1 and LAMP1 expression. Conversely, p.Asp100Tyr decreased both LysoTracker® fluorescence and LAMP1 levels, leaving EEA1 expression unaffected. Both mutations decreased v-ATPase recruitment to autophagosomes, with no major impact on autophagy. Experiments performed on patients' lymphoblasts using the LysoSensor™ probe revealed lower pH of endocytic organelles for p.Asp349Asn and a reduced expression of LAMP1 with no effect on the pH for p.Asp100Tyr. These data demonstrate gain of function for p.Asp349Asn characterized by an increased proton pumping in intracellular organelles, and loss of function for p.Asp100Tyr with decreased expression of ATP6V1A and reduced levels of lysosomal markers. We expressed p.Asp349Asn and p.Asp100Tyr in rat hippocampal neurons and confirmed significant and opposite effects in lysosomal labelling. However, both mutations caused a similar defect in neurite elongation accompanied by loss of excitatory inputs, revealing that altered lysosomal homeostasis markedly affects neurite development and synaptic connectivity. This study provides evidence that de novo heterozygous ATP6V1A mutations cause a developmental encephalopathy with a pathomechanism that involves perturbations of lysosomal homeostasis and neuronal connectivity, uncovering a novel role for v-ATPase in neuronal development.

61 citations


Journal ArticleDOI
TL;DR: This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces.
Abstract: This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

47 citations


Journal ArticleDOI
TL;DR: The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity, and supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astroCyte dysfunctions.
Abstract: Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.

44 citations


Journal ArticleDOI
TL;DR: Observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.
Abstract: Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of nigral dopamine neurons. The deposition of fibrillary aggregated α-synuclein in Lewy bodies (LB), that is considered to play a causative role in the disease, constitutes another key neuropathological hallmark of PD. We have recently described that synapsin III (Syn III), a synaptic phosphoprotein that regulates dopamine release in cooperation with α-synuclein, is present in the α-synuclein insoluble fibrils composing the LB of patients affected by PD. Moreover, we observed that silencing of Syn III gene could prevent α-synuclein fibrillary aggregation in vitro. This evidence suggests that Syn III might be crucially involved in α-synuclein pathological deposition. To test this hypothesis, we studied whether mice knock-out (ko) for Syn III might be protected from α-synuclein aggregation and nigrostriatal neuron degeneration resulting from the unilateral injection of adeno-associated viral vectors (AAV)-mediating human wild-type (wt) α-synuclein overexpression (AAV-hαsyn). We found that Syn III ko mice injected with AAV-hαsyn did not develop fibrillary insoluble α-synuclein aggregates, showed reduced amount of α-synuclein oligomers detected by in situ proximity ligation assay (PLA) and lower levels of Ser129-phosphorylated α-synuclein. Moreover, the nigrostriatal neurons of Syn III ko mice were protected from both synaptic damage and degeneration triggered by the AAV-hαsyn injection. Our observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.

43 citations


Journal ArticleDOI
TL;DR: An alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8 is found to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility.
Abstract: Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass.

43 citations


Journal ArticleDOI
TL;DR: The results are consistent with the known ability of claudin-15 to regulate tight junction selectivity and with the experimentally determined role of the acidic residues, and provides insights into the atomistic details of ion transport in paracellular channels that could be shared by other cl Claudin-based architectures.
Abstract: Claudins are tissue-specific transmembrane proteins able to form junctions between two cells and regulate the flow of physiological solutes parallel to the cell walls, that is, the paracellular transport. Claudin-15 is highly expressed in the intestine where it forms efficient Na+ channels and Cl- barriers. However, the molecular details of these biological complexes are still unclear. Here, the permeation process of Na+, K+, and Cl- ions inside a refined structural model of a claudin-15 paracellular channel is investigated using all-atom molecular dynamics simulations in a double-bilayer and explicit solvent. One-dimensional potential of mean force (PMF) profiles, calculated using umbrella sampling (US) simulations, show that the channel allows the passage of the two physiological cations while excluding chloride. These features are generated by the action of several acidic residues, in particular the ring of D55 residues which is located at the narrowest region of the pore, in correspondence with the energy minimum for cations and the peak for chloride. We also used the Voronoi-tessellated milestoning method to obtain additional PMF profiles and the permeation timescale of the three ions. The milestoning PMFs agree well with those obtained by US, and the rate calculation reveals that the passage of chloride is almost 30 times slower than that of sodium. Our results are consistent with the known ability of claudin-15 to regulate tight junction selectivity and with the experimentally determined role of the acidic residues. This further validates our structural model and provides insights into the atomistic details of ion transport in paracellular channels that could be shared by other claudin-based architectures.

35 citations


Journal ArticleDOI
TL;DR: Benfenati and Lanzani discuss the development of retinal prostheses to help restore vision that use organic molecules, and the applications of these interfaces might be extended in the future to other biomedical fields.
Abstract: Inherited or age-dependent retinal dystrophies such as Retinitis pigmentosa (RP) and macular degeneration (MD) are among the most prevalent causes of blindness. Despite enormous efforts, no established pharmacological treatment to prevent or cure photoreceptor degeneration has been identified. Given the relative survival of the inner retina, attempts have been made to restore vision with optogenetics or with retinal neuroprostheses to allow light-dependent stimulation of the inner retinal network. While microelectrode and photovoltaic devices based on inorganic technologies have been proposed and in many cases implanted in RP patients, a new generation of prosthetics based on organic molecules, such as organic photoswitches and conjugated polymers, is demonstrating an unexpected potential for visual rescue and intimate interactions with functioning tissue. Organic devices are starting a new era of tissue electronics, in which light-sensitive molecules and live tissues integrate and tightly interact, producing a new ecosystem of organic prosthetics and intelligent biotic/abiotic interfaces. In addition to the retina, the applications of these interfaces might be extended in the future to other biomedical fields. Benfenati and Lanzani discuss the development of retinal prostheses to help restore vision that use organic molecules.

Journal ArticleDOI
TL;DR: A biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF).
Abstract: Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-e-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

Journal ArticleDOI
TL;DR: The data identify REST as a fundamental molecular player for neuronal homeostasis able to downscale simultaneously both intrinsic excitability and presynaptic efficiency in response to elevated neuronal activity.
Abstract: Homeostatic plasticity is a regulatory feedback response in which either synaptic strength or intrinsic excitability can be adjusted up or down to offset sustained changes in neuronal activity. Although a growing number of evidences constantly provide new insights into these two apparently distinct homeostatic processes, a unified molecular model remains unknown. We recently demonstrated that REST is a transcriptional repressor critical for the downscaling of intrinsic excitability in cultured hippocampal neurons subjected to prolonged elevation of electrical activity. Here, we report that, in the same experimental system, REST also participates in synaptic homeostasis by reducing the strength of excitatory synapses by specifically acting at the presynaptic level. Indeed, chronic hyperactivity triggers a REST-dependent decrease of the size of synaptic vesicle pools through the transcriptional and translational repression of specific presynaptic REST target genes. Together with our previous report, the data identify REST as a fundamental molecular player for neuronal homeostasis able to downscale simultaneously both intrinsic excitability and presynaptic efficiency in response to elevated neuronal activity. This experimental evidence adds new insights to the complex activity-dependent transcriptional regulation of the homeostatic plasticity processes mediated by REST.

Journal ArticleDOI
TL;DR: This study presents the first biomagnetic chip based on magnetic tunnel junction (MTJ) technology for cell culture studies and shows the biocompatibility of these sensors, paving the way to the development of high performing biomagnetic sensing technology for the electrophysiology of in vitro systems, in analogy with Multi Electrode Arrays.
Abstract: Magnetoencephalography has been established nowadays as a crucial in vivo technique for clinical and diagnostic applications due to its unprecedented spatial and temporal resolution and its non-invasive methods. However, the innate nature of the biomagnetic signals derived from active biological tissue is still largely unknown. One alternative possibility for in vitro analysis is the use of magnetic sensor arrays based on Magnetoresistance. However, these sensors have never been used to perform long-term in vitro studies mainly due to critical biocompatibility issues with neurons in culture. In this study, we present the first biomagnetic chip based on magnetic tunnel junction (MTJ) technology for cell culture studies and show the biocompatibility of these sensors. We obtained a full biocompatibility of the system through the planarization of the sensors and the use of a three-layer capping of SiO2/Si3N4/SiO2. We grew primary neurons up to 20 days on the top of our devices and obtained proper functionality and viability of the overlying neuronal networks. At the same time, MTJ sensors kept their performances unchanged for several weeks in contact with neurons and neuronal medium. These results pave the way to the development of high performing biomagnetic sensing technology for the electrophysiology of in vitro systems, in analogy with Multi Electrode Arrays.

Journal ArticleDOI
TL;DR: STS markedly decreases brain glucose consumption without altering measured FDG SUV in mouse experimental models, causing an apparent paradox: the decrease in FDG sequestration by the skeletal muscle is as profound as to prolong tracer persistence in the bloodstream and thus its availability for brain uptake.
Abstract: The close connection between neuronal activity and glucose consumption accounts for the clinical value of 18F-fluoro-2-deoxyglucose (FDG) imaging in neurodegenerative disorders. Nevertheless, brain metabolic response to starvation (STS) might hamper the diagnostic accuracy of FDG PET/CT when the cognitive impairment results in a severe food deprivation. Thirty six-week-old BALB/c female mice were divided into two groups: “control” group (n = 15) were kept under standard conditions and exposed to fasting for 6 h before the study; the remaining “STS” mice were submitted to 48 h STS (absence of food and free access to water) before imaging. In each group, nine mice were submitted to dynamic micro-PET imaging to estimate brain and skeletal muscle glucose consumption (C- and SM-MRGlu*) by Patlak approach, while six mice were sacrificed for ex vivo determination of the lumped constant, defined as the ratio between CMRGlu* and glucose consumption measured by glucose removal from the incubation medium (n = 3) or biochemical analyses (n = 3), respectively. CMRGlu* was lower in starved than in control mice (46.1 ± 23.3 vs 119.5 ± 40.2 nmol × min−1 × g−1, respectively, p < 0.001). Ex vivo evaluation documented a remarkable stability of lumped constant as documented by the stability of GLUT expression, G6Pase activity, and kinetic features of hexokinase-catalyzed phosphorylation. However, brain SUV in STS mice was even (though not significantly) higher with respect to control mice. Conversely, a marked decrease in both SM-MRGlu* and SM-SUV was documented in STS mice with respect to controls. STS markedly decreases brain glucose consumption without altering measured FDG SUV in mouse experimental models. This apparent paradox does not reflect any change in lumped constant. Rather, it might be explained by the metabolic response of the whole body: the decrease in FDG sequestration by the skeletal muscle is as profound as to prolong tracer persistence in the bloodstream and thus its availability for brain uptake.

Journal ArticleDOI
TL;DR: It is found that Syns I and II play an important role in the regulation of adult neurogenesis, and the defects in neuroGenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.
Abstract: Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.

Journal ArticleDOI
TL;DR: This study represents a stepping-stone to the use of noninvasive functional techniques for addressing questions about invertebrate neuroscience and regenerative medicine.
Abstract: This study aimed to develop a method of administering 18F-FDG to the common octopus in order to perform a PET biodistribution assay characterizing glucose metabolism in organs and regenerating tissues. Methods: Seven animals (two of which had a regenerating arm) were anesthetized with 3.7% MgCl2 in artificial seawater and then injected with 18-30 MBq of isosmotic 18F-FDG through either the left branchial heart or the anterior vena cava. After an uptake time of about 50 min, the animals were sacrificed and placed on the bed of a small-animal PET scanner, and 10-min static acquisitions were obtained at 3-4 bed positions to visualize the entire body. To confirm image interpretation, internal organs of interest were collected and counted with a γ-counter. Results: Administration through the anterior vena cava resulted in a good full-body distribution of 18F-FDG as seen on the PET images. Uptake was high in the mantle mass and relatively lower in the arms. In particular, the brain, optic lobes, and arms were clearly identified and were measured for their uptake (SUVmax: 6.57 ± 1.86, 7.59 ± 1.66, and 1.12 ± 0.06, respectively). Interestingly, 18F-FDG uptake was up to 3-fold higher in the highly proliferating areas of regenerating arms. Conclusion: This study represents a stepping-stone to the use of noninvasive functional techniques for addressing questions about invertebrate neuroscience and regenerative medicine.

Journal ArticleDOI
TL;DR: The temperament test was not altered by vision impairment but was validated to measure stress and behavioral alterations in laboratory pigs undergoing experimental procedures, thus achieving marked refinement of the study.
Abstract: Swine (Sus scrofa) are often the ‘gold standard’ laboratory animal for ophthalmology research due to the anatomic and physiologic similarities between the porcine and human eye and retina. Despite the importance of this model, few tools for behavioral vision assessment in pigs are available. The aim of this study was to identify and validate a feasible and reproducible behavioral test to assess vision in a pig model of photoreceptor degeneration. In addition, a robust behavioral test will reduce stress and enhance enrichment by allowing animals opportunities for environmental exploration and by reducing the number of invasive experimental procedures. Two distinct behavioral approaches were tested: the obstacle-course test and temperament test. In the obstacle-course test, pigs were challenged (after an initial training period) to navigate a 10-object obstacle course; time and the number of collisions with the objects were recorded. In the temperament test, the time needed for pigs to complete 3 different tasks (human-approach, novel-object, and open-door tests) was recorded. The obstacle-course test revealed significant differences in time and number of collisions between swine with vision impairment and control animals, and the training period proved to be pivotal to avoid bias due to individual animal characteristics. In contrast, the temperament test was not altered by vision impairment but was validated to measure stress and behavioral alterations in laboratory pigs undergoing experimental procedures, thus achieving marked refinement of the study.

Journal ArticleDOI
TL;DR: In this paper, the striatal-enriched protein tyrosine phosphatase (STEP) was found to play an important role at nerve terminals in the regulation of Ca2+ homeostasis and neurotransmitter release.
Abstract: The striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase involved in synaptic transmission. The current hypothesis on STEP function holds that it opposes synaptic strengthening by dephosphorylating and inactivating key neuronal proteins involved in synaptic plasticity and intracellular signaling, such as the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. Although STEP has a predominant role at the post-synaptic level, it is also expressed in nerve terminals. To better investigate its physiological role at the presynaptic level, we functionally investigated brain synaptosomes and autaptic hippocampal neurons from STEP knockout (KO) mice. Synaptosomes purified from mutant mice were characterized by an increased basal and evoked glutamate release compared with wild-type animals. Under resting conditions, STEP KO synaptosomes displayed increased cytosolic Ca2+ levels accompanied by an enhanced basal activity of Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and hyperphosphorylation of synapsin I at CaMKII sites. Moreover, STEP KO hippocampal neurons exhibit an increase of excitatory synaptic strength attributable to an increased size of the readily releasable pool of synaptic vesicles. These results provide new evidence that STEP plays an important role at nerve terminals in the regulation of Ca2+ homeostasis and neurotransmitter release.

Journal ArticleDOI
13 Dec 2018-PLOS ONE
TL;DR: Anti-synapsin autoantibodies preferentially bind to either the A- or the D-domain of synapsin I.
Abstract: Objective To identify the specific domains of the presynaptic protein synapsin targeted by recently described autoantibodies to synapsin. Methods Sera of 20 and CSF of two patients with different psychiatric and neurological disorders previously tested positive for immunoglobulin (Ig)G antibodies to full-length synapsin were screened for IgG against synapsin I domains using HEK293 cells transfected with constructs encoding different domains of rat synapsin Ia. Additionally, IgG subclasses were determined using full-length synapsin Ia. Serum and CSF from one patient were also screened for IgA autoantibodies to synapsin I domains. Sera from nine and CSF from two healthy subjects were analyzed as controls. Results IgG in serum from 12 of 20 IgG synapsin full-length positive patients, but from none of the healthy controls, bound to synapsin domains. Of these 12 sera, six bound to the A domain, five to the D domain, and one to the B- (and possibly A-), D-, and E-domains of synapsin I. IgG antibodies to the D-domain were also detected in one of the CSF samples. Determination of IgG subclasses detected IgG1 in two sera and one CSF, IgG2 in none of the samples, IgG3 in two sera, and IgG4 in eight sera. One patient known to be positive for IgA antibodies to full-length synapsin had IgA antibodies to the D-domain in serum and CSF. Conclusions Anti-synapsin autoantibodies preferentially bind to either the A- or the D-domain of synapsin I.

Book ChapterDOI
27 Jun 2018
TL;DR: In this article, the authors discuss the engineering of graphene nanosheets able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs.
Abstract: In recent years, the scientific community has witnessed an exponential increase in the use of graphene for biomedical applications. For what concerns neuroscience, the interest raised by this material is given by the fact that graphene nanosheets can be used as carriers for biomolecule delivery to the central nervous system. In this case, an important aspect is the evaluation of their toxicity, which strongly depends on flake composition, chemical functionalization and dimensions. Furthermore, graphene can be exploited as a substrate for tissue engineering. In this application, conductivity is probably the most relevant amongst the various properties of the different graphene materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation. This chapter discusses the engineering of graphene nanosheets able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs. Moreover, the use of graphene to develop three-dimensional scaffolds, or as a component of hybrid composites/multi-layer organic electronics devices, is described. The need of an accurate theoretical modeling of the interface between graphene and biological material is also addressed, by describing the interaction of graphene with proteins and cell membranes at the nanoscale.

Journal ArticleDOI
TL;DR: Evidence is accumulating in support of the notion that this protein plays a fundamental role during nervous system development as well as in the maintenance of neuronal homeostasis during adolescence and adulthood, and knowledge acquired through the analysis of Kidins220 mutant lines could help to elucidate the molecular and cellular mechanisms leading to the human pathologies.
Abstract: We read with interest the letter recently published in the European Journal of Neurology by Yang et al. [1]. In this case report, a novel heterozygous frameshift mutation in the KIDINS220 gene was identified as a possible genetic determinant of severe spastic paraplegia associated with obesity in a 3-year-old Chinese girl. This is a very interesting finding, as similar heterozygous mutations have been recently reported to cause spastic paraplegia, intellectual disability, nystagmus and obesity (‘SINO’ syndrome) in three unrelated children [2]. Moreover, when in homozygosis, loss-of-function KIDINS220 variants cause extremely severe neurodevelopmental defects that are embryonically lethal [3]. Thus, evidence is accumulating in support of the notion that this protein plays a fundamental role during nervous system development as well as in the maintenance of neuronal homeostasis during adolescence and adulthood. The kinase D interacting substrate of 220 kDa (Kidins220)/ankyrin repeat-rich membrane spanning (ARMS) protein was originally identified in 2000 as the first neuronal substrate for protein kinase D phosphorylation [4], as well as a downstream target of neurotrophin and ephrin receptors [5]. Early work on this protein was conducted in the laboratories of Dr Schiavo (UCL Institute of Neurology, London, UK) and Dr Chao (Skirball Institute of Biomolecular Medicine, New York, NY, USA), and contributed to establish Kidins220 as a crucial mediator of neurotrophin signaling in neurons (reviewed in [6]). In the case report of Yang et al., the authors wrongly state that ‘no mammalian model has yet been established’ [1]. On the contrary, at least two Kidins220 genetically modified mouse lines are presently available that, in view of the most recent literature, represent valuable preclinical models for spastic paraplegia and related pathologies. The first mouse strain generated by Dr Chao’s group at New York University is a heterozygous line expressing about 60–70% of the levels of the wild-type protein, which causes reduced dendritic complexity and spine instability [7]. The other independent mouse strain, generated in Dr Schiavo’s laboratory, carries a floxed Kidins220 gene, which was initially used to drive the full Kidins220 knockout. The complete ablation of Kidins220 is lethal at late embryonic stages. Knockout embryos present extensive apoptosis in the central and peripheral nervous systems, coupled to hydrocephalus as well as to defects of cardiovascular development [8,9]. Importantly, some of the phenotypes characterizing the Kidins220 knockout embryos resemble the defects observed in the human embryos carrying homozygous Kidins220 loss-of-function mutations [3]. Moreover, the immune system-specific deletion of Kidins220 leads to severe alterations of B cell development and activation [10]. We are currently analyzing animals bearing the brain-specific deletion of the protein, which present specific phenotypes in terms of brain development and behavior (F. Cesca, unpublished observations). We thus believe that the knowledge acquired through the analysis of Kidins220 mutant lines could help to elucidate the molecular and cellular mechanisms leading to the human pathologies, and possibly open the way to new avenues for therapeutic interventions.