scispace - formally typeset
D

D. R. Tiedt

Researcher at South Dakota School of Mines and Technology

Publications -  54
Citations -  7755

D. R. Tiedt is an academic researcher from South Dakota School of Mines and Technology. The author has contributed to research in topics: Dark matter & WIMP. The author has an hindex of 25, co-authored 49 publications receiving 6920 citations.

Papers
More filters
Journal ArticleDOI

First results from the LUX dark matter experiment at the Sanford Underground Research Facility

D. S. Akerib, +101 more
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Journal ArticleDOI

Results from a Search for Dark Matter in the Complete LUX Exposure

D. S. Akerib, +100 more
TL;DR: This search yields no evidence of WIMP nuclear recoils and constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon experiment are reported.
Journal ArticleDOI

Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data

D. S. Akerib, +100 more
TL;DR: This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV.
Journal Article

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

R. Acciarri, +794 more
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.
Journal Article

The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

C. Adams, +481 more
TL;DR: The Long-Baseline Neutrino Experiment (LBNE) as mentioned in this paper is an extensively developed plan for a world-class experiment dedicated to addressing the early evolution of our universe, its current state and its eventual fate.