scispace - formally typeset
Search or ask a question
Institution

Bell Labs

Company
About: Bell Labs is a based out in . It is known for research contribution in the topics: Laser & Optical fiber. The organization has 36499 authors who have published 59862 publications receiving 3190823 citations. The organization is also known as: Bell Laboratories & AT&T Bell Laboratories.


Papers
More filters
PatentDOI
28 Aug 2001-Science
TL;DR: In this paper, the authors proposed a quantum cascade laser consisting of a gain region (14) consisting of several layers (20) each including: alternating strata of a first type (28) defining each AllnAs quantum barrier and strata with injection barriers interposed between two of the layers.
Abstract: The invention concerns a quantum cascade laser comprising in particular a gain region (14) consisting of several layers (20) each including: alternating strata of a first type (28) defining each an AllnAs quantum barrier and strata of a second type (28) defining each an InGaAs quantum barrier, and injection barriers (22), interposed between two of the layers (20). The layers of the gain region (14) form each an active zone extending from one to the other of the injection barriers (22) adjacent thereto. The strata (26, 28) are dimensioned such that: each of the wells comprises, in the presence of an electric field, at least a first upper subband, a second median subband, and a third lower subband, and the probability of an electron being present in the first subband is highest in the proximity of one of the adjacent injection barriers, in the second subband in the median part of the zone and in the third subband in the proximity of the other adjacent barriers. The laser is formed by a succession of active zones and injection barriers, without interposition of a relaxation zone.

3,910 citations

Journal ArticleDOI
W. L. McMillan1
TL;DR: In this paper, the superconducting transition temperature is calculated as a function of the electron-phonon and electron-electron coupling constants within the framework of strong coupling theory.
Abstract: The superconducting transition temperature is calculated as a function of the electron-phonon and electron-electron coupling constants within the framework of the strong-coupling theory. Using this theoretical result, we find empirical values of the coupling constants and the "band-structure" density of states for a number of metals and alloys. It is noted that the electron-phonon coupling constant depends primarily on the phonon frequencies rather than on the electronic properties of the metal. Finally, using these results, one can predict a maximum superconducting transition temperature.

3,895 citations

Journal ArticleDOI
S. Lin1, Brian W. Kernighan1
TL;DR: This paper discusses a highly effective heuristic procedure for generating optimum and near-optimum solutions for the symmetric traveling-salesman problem based on a general approach to heuristics that is believed to have wide applicability in combinatorial optimization problems.
Abstract: This paper discusses a highly effective heuristic procedure for generating optimum and near-optimum solutions for the symmetric traveling-salesman problem. The procedure is based on a general approach to heuristics that is believed to have wide applicability in combinatorial optimization problems. The procedure produces optimum solutions for all problems tested, "classical" problems appearing in the literature, as well as randomly generated test problems, up to 110 cities. Run times grow approximately as n2; in absolute terms, a typical 100-city problem requires less than 25 seconds for one case GE635, and about three minutes to obtain the optimum with above 95 per cent confidence.

3,761 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
Peter W. Shor1
TL;DR: In the mid-1990s, theorists devised methods to preserve the integrity of quantum bits\char22{}techniques that may become the key to practical quantum computing on a large scale.
Abstract: In the mid-1990s, theorists devised methods to preserve the integrity of quantum bits---techniques that may become the key to practical quantum computing on a large scale.

3,668 citations


Authors

Showing all 36526 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
David R. Williams1782034138789
John A. Rogers1771341127390
Zhenan Bao169865106571
Stephen R. Forrest1481041111816
Bernhard Schölkopf1481092149492
Thomas S. Huang1461299101564
Kurt Wüthrich143739103253
John D. Joannopoulos137956100831
Steven G. Louie13777788794
Joss Bland-Hawthorn136111477593
Marvin L. Cohen13497987767
Federico Capasso134118976957
Christos Faloutsos12778977746
Robert J. Cava125104271819
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Princeton University
146.7K papers, 9.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202245
2021479
2020712
2019750
2018862