scispace - formally typeset
Search or ask a question
Institution

Bell Labs

Company
About: Bell Labs is a based out in . It is known for research contribution in the topics: Laser & Optical fiber. The organization has 36499 authors who have published 59862 publications receiving 3190823 citations. The organization is also known as: Bell Laboratories & AT&T Bell Laboratories.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple encoding algorithm is introduced that achieves near-capacity at sum-rates of tens of bits/channel use and a certain perturbation of the data using a "sphere encoder" can be chosen to further reduce the energy of the transmitted signal.
Abstract: Recent theoretical results describing the sum-capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achieves near-capacity at sum-rates of tens of bits/channel use. The algorithm is a variation on channel inversion that regularizes the inverse and uses a "sphere encoder" to perturb the data to reduce the energy of the transmitted signal. The paper is comprised of two parts. In this second part, we show that, after the regularization of the channel inverse introduced in the first part, a certain perturbation of the data using a "sphere encoder" can be chosen to further reduce the energy of the transmitted signal. The performance difference with and without this perturbation is shown to be dramatic. With the perturbation, we achieve excellent performance at all signal-to-noise ratios. The results of both uncoded and turbo-coded simulations are presented.

972 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: The single-phase perovskite Ba0.6K0.4BiO3 has a magnetically determined onset temperature of 29.8 K, a Tc considerably higher than that of conventional superconductors and surpassed only by copper-containing compounds.
Abstract: It is well known that the breakthrough of Bednorz and Muller1 in discovering superconductivity in (La, Ba)2CuO4 was inspired in part by their knowledge of the superconducting properties of Ba(Pb, Bi)O3 (ref. 2). With a transition temperature, Tc, of ∼12 K, that compound was not generally considered anomalous despite the fact that its Tcis 3–5 times higher than that of traditional superconductors with comparable density of states3–5. The increases in Tc for copper-oxide-based materials continue to generate worldwide excitement, but from both a chemical and theoretical point of view it would also be exciting if high-Tcsuperconductivity were observed in another class of materials. Here we report the results of experiments leading us to the single-phase perovskite Ba0.6K0.4BiO3, which has a magnetically determined onset temperature of 29.8 K—a Tc considerably higher than that of conventional superconductors and surpassed only by copper-containing compounds. Superconductivity in this compound occurs within the framework of a three dimensionally connected bismuth-oxygen array. These results suggest that further research toward exploring the limiting Tcs for bismuth-oxide-based, high-temperature superconductors might be fruitful.

972 citations

Journal ArticleDOI
27 Jan 1995-Science
TL;DR: The phenomenology of these patterns, and of the shapes of their constituent domains, is reviewed here from a point of view that interprets these patterns as a manifestation of modulated phases.
Abstract: A wide variety of two- and three-dimensional physical-chemical systems display domain patterns in equilibrium. The phenomenology of these patterns, and of the shapes of their constituent domains, is reviewed here from a point of view that interprets these patterns as a manifestation of modulated phases. These phases are stabilized by competing interactions and are characterized by periodic spatial variations of the pertinent order parameter, the corresponding modulation period generally displaying a dependence on temperature and other external fields. This simple picture provides a unifying framework to account for striking and substantial similarities revealed in the prevalent "stripe" and "bubble" morphologies as well as in commonly observed, characteristic domain-shape instabilities. Several areas of particular current interest are discussed.

970 citations

Journal ArticleDOI
Volker Heine1
TL;DR: In this paper, it was shown that virtual or resonance surface states can exist which behave for practical purposes in the same way as the tails of the metal wave functions rather than separate states.
Abstract: The properties of metal-to-semiconductor junctions and of free semiconductor surfaces are usually explained on the basis of surface states. The theory of the metal contacts is discussed critically, because strictly speaking localized surface states cannot exist in such junctions. However, it is shown that virtual or resonance surface states can exist which behave for practical purposes in the same way. They are really the tails of the metal wave functions rather than separate states. In the past, the length of this tail has often been ignored. Some estimates of its length are made and its consequences pointed out. A semiquantitative discussion is given of various recent data, including the effect of an oxide layer on barrier height, the variation of barrier height with the metal, the work function of a free surface at high doping, and the effect of a cesium layer on the work function.

968 citations

Journal ArticleDOI
TL;DR: In this paper, the quasiparticle recombination time in a strong-coupled superconductor was measured by measuring the lifetime-broadened energy gap edge, and agreement with the calculated value was excellent.
Abstract: We have measured the quasiparticle recombination time in the strong-coupled superconductor ${\mathrm{Pb}}_{0.9}$${\mathrm{Bi}}_{0.1}$ directly by measuring the lifetime-broadened energy gap edge. This is done by measuring the $I\ensuremath{-}V$ characteristics of a superconducting tunnel junction of the type ${\mathrm{Pb}}_{0.9}$${\mathrm{Bi}}_{0.1}$-insulator-${\mathrm{Pb}}_{0.9}$${\mathrm{Bi}}_{0.1}$. Agreement with the calculated value is excellent.

968 citations


Authors

Showing all 36526 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
David R. Williams1782034138789
John A. Rogers1771341127390
Zhenan Bao169865106571
Stephen R. Forrest1481041111816
Bernhard Schölkopf1481092149492
Thomas S. Huang1461299101564
Kurt Wüthrich143739103253
John D. Joannopoulos137956100831
Steven G. Louie13777788794
Joss Bland-Hawthorn136111477593
Marvin L. Cohen13497987767
Federico Capasso134118976957
Christos Faloutsos12778977746
Robert J. Cava125104271819
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Princeton University
146.7K papers, 9.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202245
2021479
2020712
2019750
2018862