scispace - formally typeset
Search or ask a question
Institution

Bell Labs

Company
About: Bell Labs is a based out in . It is known for research contribution in the topics: Laser & Optical fiber. The organization has 36499 authors who have published 59862 publications receiving 3190823 citations. The organization is also known as: Bell Laboratories & AT&T Bell Laboratories.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explain how the first chapter of the massive MIMO research saga has come to an end, while the story has just begun, and outline five new massive antenna array related research directions.

556 citations

Journal ArticleDOI
TL;DR: In this article, a simple expression for the low field mobility in the miniband conduction regime is derived; localization effects, hopping conduction, and effective mass filtering are discussed.
Abstract: New results on the physics of tunneling in quantum well heterostructures and its device applications are discussed. Following a general review of the field in the Introduction, in the second section resonant tunneling through double barriers is investigated. Recent conflicting interpretations of this effect in terms of a Fabry-Perot mechanism or sequential tunneling are reconciled via an analysis of scattering. It is shown that the ratio of the intrinsic resonance width to the total scattering width (collision broadening) determines which of the two mechanisms controls resonant tunneling. The role of symmetry is quantitatively analyzed and two recently proposed resonant tunneling transistor structures are discussed. The third section deals with perpendicular transport in superlattices. A simple expression for the low field mobility in the miniband conduction regime is derived; localization effects, hopping conduction, and effective mass filtering are discussed. In the following section, experimental results on tunneling superlattice photoconductors based on effective mass filtering are presented. In the fifth section, negative differential resistance resulting from localization in a high electric field is discussed. In the last section, the observation of sequential resonant tunneling in superlattices is reported. We point out a remarkable analogy between this phenomenon and paramagnetic spin resonance. New tunable infrared semiconductor lasers and wavelength selective detectors based on this effect are discussed.

555 citations

Proceedings ArticleDOI
03 Aug 1997
TL;DR: A multiresolution representation for meshes based on subdivision is described, which is a natural extension of the existing patch-based surface representations, and a scalable interactive multiresolved editing system is built based on such algorithms.
Abstract: We describe a multiresolution representation for meshes based on subdivision, which is a natural extension of the existing patch-based surface representations. Combining subdivision and the smoothing algorithms of Taubin [26] allows us to construct a set of algorithms for interactive multiresolution editing of complex hierarchical meshes of arbitrary topology. The simplicity of the underlying algorithms for refinement and coarsification enables us to make them local and adaptive, thereby considerably improving their efficiency. We have built a scalable interactive multiresolution editing system based on such algorithms.

554 citations

Proceedings ArticleDOI
14 Apr 2013
TL;DR: It is shown how to leverage the centralized controller to get significant improvements in network utilization as well as to reduce packet losses and delays and it is shown that these improvements are possible even in cases where there is only a partial deployment of SDN capability in a network.
Abstract: Software Defined Networking is a new networking paradigm that separates the network control plane from the packet forwarding plane and provides applications with an abstracted centralized view of the distributed network state. A logically centralized controller that has a global network view is responsible for all the control decisions and it communicates with the network-wide distributed forwarding elements via standardized interfaces. Google recently announced [5] that it is using a Software Defined Network (SDN) to interconnect its data centers due to the ease, efficiency and flexibility in performing traffic engineering functions. It expects the SDN architecture to result in better network capacity utilization and improved delay and loss performance. The contribution of this paper is on the effective use of SDNs for traffic engineering especially when SDNs are incrementally introduced into an existing network. In particular, we show how to leverage the centralized controller to get significant improvements in network utilization as well as to reduce packet losses and delays. We show that these improvements are possible even in cases where there is only a partial deployment of SDN capability in a network. We formulate the SDN controller's optimization problem for traffic engineering with partial deployment and develop fast Fully Polynomial Time Approximation Schemes (FPTAS) for solving these problems. We show, by both analysis and ns-2 simulations, the performance gains that are achievable using these algorithms even with an incrementally deployed SDN.

554 citations


Authors

Showing all 36526 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
David R. Williams1782034138789
John A. Rogers1771341127390
Zhenan Bao169865106571
Stephen R. Forrest1481041111816
Bernhard Schölkopf1481092149492
Thomas S. Huang1461299101564
Kurt Wüthrich143739103253
John D. Joannopoulos137956100831
Steven G. Louie13777788794
Joss Bland-Hawthorn136111477593
Marvin L. Cohen13497987767
Federico Capasso134118976957
Christos Faloutsos12778977746
Robert J. Cava125104271819
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Princeton University
146.7K papers, 9.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202245
2021479
2020712
2019750
2018862