scispace - formally typeset
Search or ask a question
Institution

Bell Labs

Company
About: Bell Labs is a based out in . It is known for research contribution in the topics: Laser & Optical fiber. The organization has 36499 authors who have published 59862 publications receiving 3190823 citations. The organization is also known as: Bell Laboratories & AT&T Bell Laboratories.


Papers
More filters
Book
Bjarne Stroustrup1
01 Jan 1994
TL;DR: The Prehistory of C++ and the C++ Language Design Rules, 1985-1993, and Looking Ahead, which describes the future of the language and its structure, are published.
Abstract: PART I. 1. The Prehistory of C++ . 2. C with Classes. 3. The Birth of C++. 4. C++ Language Design Rules. 5. Chronology 1985-1993. 6. Standardization. 7. Interest and Use. 8. Libraries. 9. Looking Ahead. PART II. 1. Memory Management. 2. Overloading. 3. Multiple Inheritance. 4. Class Concept Refinements. 5. Casting. 6. Templates. 7. Exception Handling. 8. Namespaces. 9. The C Preprocessor. Index. 0201543303T04062001

544 citations

Journal ArticleDOI

544 citations

Journal ArticleDOI
TL;DR: Given a triangulation of a simple polygonP, linear-time algorithms for solving a collection of problems concerning shortest paths and visibility withinP are presented.
Abstract: Given a triangulation of a simple polygonP, we present linear-time algorithms for solving a collection of problems concerning shortest paths and visibility withinP. These problems include calculation of the collection of all shortest paths insideP from a given source vertexS to all the other vertices ofP, calculation of the subpolygon ofP consisting of points that are visible from a given segment withinP, preprocessingP for fast "ray shooting" queries, and several related problems.

544 citations

Journal ArticleDOI
TL;DR: In this article, a temporal language that can constrain the time difference between events with finite, yet arbitrary, precision is introduced and proved to be EXPSPACE-complete.
Abstract: The most natural, compositional, way of modeling real-time systems uses a dense domain for time. The satisfiability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time difference between events only with finite, yet arbitrary, precision and show the resulting logic to be EXPSPACE-complete. This result allows us to develop an algorithm for the verification of timing properties of real-time systems with a dense semantics.

543 citations

Journal ArticleDOI
TL;DR: This paper uses F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs and can be extended to allow a degree constraint at one vertex.
Abstract: Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue). Their data structure, theFibonacci heap (or F-heap) supports arbitrary deletion inO(logn) amortized time and other heap operations inO(1) amortized time. In this paper we use F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For an undirected graph containingn vertices andm edges, our minimum spanning tree algorithm runs inO(m logβ (m, n)) time, improved fromO(mβ(m, n)) time, whereβ(m, n)=min {i|log(i) n ≦m/n}. Our minimum spanning tree algorithm for directed graphs runs inO(n logn + m) time, improved fromO(n log n +m log log log(m/n+2) n). Both algorithms can be extended to allow a degree constraint at one vertex.

543 citations


Authors

Showing all 36526 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
David R. Williams1782034138789
John A. Rogers1771341127390
Zhenan Bao169865106571
Stephen R. Forrest1481041111816
Bernhard Schölkopf1481092149492
Thomas S. Huang1461299101564
Kurt Wüthrich143739103253
John D. Joannopoulos137956100831
Steven G. Louie13777788794
Joss Bland-Hawthorn136111477593
Marvin L. Cohen13497987767
Federico Capasso134118976957
Christos Faloutsos12778977746
Robert J. Cava125104271819
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Princeton University
146.7K papers, 9.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202245
2021479
2020712
2019750
2018862