scispace - formally typeset
Search or ask a question
Institution

Bell Labs

Company
About: Bell Labs is a based out in . It is known for research contribution in the topics: Laser & Optical fiber. The organization has 36499 authors who have published 59862 publications receiving 3190823 citations. The organization is also known as: Bell Laboratories & AT&T Bell Laboratories.


Papers
More filters
Journal ArticleDOI
TL;DR: This work designs some multiple-antenna signal constellations and simulates their effectiveness as measured by bit-error probability with maximum-likelihood decoding and demonstrates that two antennas have a 6-dB diversity gain over one antenna at 15-dB SNR.
Abstract: Motivated by information-theoretic considerations, we propose a signaling scheme, unitary space-time modulation, for multiple-antenna communication links. This modulation is ideally suited for Rayleigh fast-fading environments, since it does not require the receiver to know or learn the propagation coefficients. Unitary space-time modulation uses constellations of T/spl times/M space-time signals (/spl Phi//sub i/, l=1, ..., L), where T represents the coherence interval during which the fading is approximately constant, and M

1,116 citations

Journal ArticleDOI
TL;DR: The design of a new methodology for representing the relationship between two sets of spectral envelopes and the proposed transform greatly improves the quality and naturalness of the converted speech signals compared with previous proposed conversion methods.
Abstract: Voice conversion, as considered in this paper, is defined as modifying the speech signal of one speaker (source speaker) so that it sounds as if it had been pronounced by a different speaker (target speaker). Our contribution includes the design of a new methodology for representing the relationship between two sets of spectral envelopes. The proposed method is based on the use of a Gaussian mixture model of the source speaker spectral envelopes. The conversion itself is represented by a continuous parametric function which takes into account the probabilistic classification provided by the mixture model. The parameters of the conversion function are estimated by least squares optimization on the training data. This conversion method is implemented in the context of the HNM (harmonic+noise model) system, which allows high-quality modifications of speech signals. Compared to earlier methods based on vector quantization, the proposed conversion scheme results in a much better match between the converted envelopes and the target envelopes. Evaluation by objective tests and formal listening tests shows that the proposed transform greatly improves the quality and naturalness of the converted speech signals compared with previous proposed conversion methods.

1,109 citations

Journal ArticleDOI
TL;DR: In this article, the canonical partition function for classical many-body systems is transformed so that the temperature-independent packing statistics and the thermal excitations are uniquely separated, and the results suggest that melting hinges upon defect softening in the quenched packings, and a crude "theory" of melting for the Gaussian core model is developed.
Abstract: The canonical partition function for classical many-body systems is transformed so that the temperature-independent packing statistics and the thermal excitations are uniquely separated. This requires classification of particle configurations according to multidimensional potential-energy minima that can be reached by steepest-descent paths ("quenches"). Such classifications have been constructed for several starting configurations in the solid, fluid, and coexistence phases of the two-dimensional Gaussian core model. These quenches reveal a remarkable degree of polycrystalline order hidden within the fluid phase by "vibrational" distortion, and that order appears to have a large correlation length. The results suggest that melting hinges upon defect softening in the quenched packings, and a crude "theory" of melting for the Gaussian core model is developed in the Appendix.

1,108 citations

Journal ArticleDOI
TL;DR: It is shown how the ultrasoft pseudopotentials which have recently been proposed by Vanderbilt can be implemented efficiently in the context of Car-Parrinello molecular-dynamics simulations.
Abstract: We show how the ultrasoft pseudopotentials which have recently been proposed by Vanderbilt can be implemented efficiently in the context of Car-Parrinello molecular-dynamics simulations We address the differences with respect to the conventional norm-conserving schemes, identify certain problems which arise, and indicate how these problems can be overcome This scheme extends the possibility of performing first-principles molecular dynamics to systems including first-row elements and transition metals

1,106 citations


Authors

Showing all 36526 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
David R. Williams1782034138789
John A. Rogers1771341127390
Zhenan Bao169865106571
Stephen R. Forrest1481041111816
Bernhard Schölkopf1481092149492
Thomas S. Huang1461299101564
Kurt Wüthrich143739103253
John D. Joannopoulos137956100831
Steven G. Louie13777788794
Joss Bland-Hawthorn136111477593
Marvin L. Cohen13497987767
Federico Capasso134118976957
Christos Faloutsos12778977746
Robert J. Cava125104271819
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Princeton University
146.7K papers, 9.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202245
2021479
2020712
2019750
2018862