scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
31 Jan 2013-Cell
TL;DR: The chromatin genome-wide in a large and diverse collection of human tissues and stem cells is mapped to yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments.

512 citations

Journal ArticleDOI
TL;DR: Results from studies in animal models suggest that specific subtypes of breast cancer may direct metastasis through recruitment and activation of haematopoietic cells, and data implicating breast cancer as a systemic disease is focused on.
Abstract: Breast cancer is now the most frequently diagnosed cancer and leading cause of cancer death in women worldwide. Strategies targeting the primary tumour have markedly improved, but systemic treatments to prevent metastasis are less effective; metastatic disease remains the underlying cause of death in the majority of patients with breast cancer who succumb to their disease. The long latency period between initial treatment and eventual recurrence in some patients suggests that a tumour may both alter and respond to the host systemic environment to facilitate and sustain disease progression. Results from studies in animal models suggest that specific subtypes of breast cancer may direct metastasis through recruitment and activation of haematopoietic cells. In this review, we focus on data implicating breast cancer as a systemic disease.

512 citations

Journal ArticleDOI
23 Feb 2017-Cell
TL;DR: In this paper, a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines was generated by using genome-wide CRISPR-based screens, which revealed new gene relationships, the essential substrates of enzymes and the molecular functions of uncharacterized proteins.

512 citations

Journal ArticleDOI
TL;DR: This protocol describes the design and execution of experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five channels, to reveal eight broadly relevant cellular components or organelles.
Abstract: In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multiwell plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Next, an automated image analysis software identifies individual cells and measures ∼1,500 morphological features (various measures of size, shape, texture, intensity, and so on) to produce a rich profile that is suitable for the detection of subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes 2 weeks; feature extraction and data analysis take an additional 1-2 weeks.

511 citations

Journal ArticleDOI
TL;DR: The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid as discussed by the authors.
Abstract: Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.

510 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022628
20211,727
20201,534
20191,364
20181,107