scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
22 Jan 2016-Science
TL;DR: In this paper, an adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of Duchenne muscular dystrophy (DMD) to remove the mutated exon 23 from the dystrophin gene.
Abstract: Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9–based genome editing as a potential therapy to treat DMD.

894 citations

Journal ArticleDOI
TL;DR: It is shown that acute myeloid leukemia (AML) follows a CSC model on the basis of sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSCs) using a sensitive xenograft assay, establishing that LSCs are clinically relevant and not artifacts of xenotransplantation.
Abstract: Xenograft studies indicate that some solid tumors and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSCs). Despite the promise of the CSC model, its relevance in humans remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model on the basis of sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSCs) using a sensitive xenograft assay. Analysis of gene expression from all functionally validated populations yielded an LSC-specific signature. Similarly, a hematopoietic stem cell (HSC) gene signature was established. Bioinformatic analysis identified a core transcriptional program shared by LSCs and HSCs, revealing the molecular machinery underlying 'stemness' properties. Both stem cell programs were highly significant independent predictors of patient survival and were found in existing prognostic signatures. Thus, determinants of stemness influence the clinical outcome of AML, establishing that LSCs are clinically relevant and not artifacts of xenotransplantation.

893 citations

Journal ArticleDOI
19 Apr 2012-Nature
TL;DR: The data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.
Abstract: DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)--including many CpG island promoters--that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.

890 citations

Journal ArticleDOI
19 Jun 2014-Nature
TL;DR: This study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.
Abstract: High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

888 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022628
20211,727
20201,534
20191,364
20181,107