scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
Mary E. Dickinson, Ann M. Flenniken, Xiao Ji1, Lydia Teboul2, Michael D. Wong, Jacqueline K. White3, Terrence F. Meehan4, Wolfgang Weninger5, Henrik Westerberg2, Hibret A. Adissu6, Candice N. Baker, Lynette Bower7, James M. Brown2, L. Brianna Caddle, Francesco Chiani8, Dave Clary7, James Cleak2, Mark J. Daly9, James M. Denegre, Brendan Doe3, Mary E. Dolan, Sarah M. Edie, Helmut Fuchs, Valerie Gailus-Durner, Antonella Galli3, Alessia Gambadoro8, Juan Gallegos10, Shiying Guo11, Neil R. Horner2, Chih-Wei Hsu, Sara Johnson2, Sowmya Kalaga, Lance C. Keith, Louise Lanoue7, Thomas N. Lawson2, Monkol Lek12, Monkol Lek9, Manuel Mark13, Susan Marschall, Jeremy Mason4, Melissa L. McElwee, Susan Newbigging6, Lauryl M. J. Nutter6, Kevin A. Peterson, Ramiro Ramirez-Solis3, Douglas J. Rowland7, Edward Ryder3, Kaitlin E. Samocha12, Kaitlin E. Samocha9, John R. Seavitt10, Mohammed Selloum13, Zsombor Szoke-Kovacs2, Masaru Tamura, Amanda G. Trainor7, Ilinca Tudose4, Shigeharu Wakana, Jonathan Warren4, Olivia Wendling13, David B. West14, Leeyean Wong, Atsushi Yoshiki, Daniel G. MacArthur12, Daniel G. MacArthur9, Glauco P. Tocchini-Valentini8, Xiang Gao11, Paul Flicek4, Allan Bradley3, William C. Skarnes3, Monica J. Justice, Helen Parkinson4, Mark W. Moore, Sara Wells2, Robert E. Braun, Karen L. Svenson, Martin Hrabé de Angelis15, Yann Herault13, Timothy J. Mohun16, Ann-Marie Mallon2, R. Mark Henkelman, Steve D.M. Brown2, David J. Adams3, Kevin C K Lloyd7, Colin McKerlie6, Arthur L. Beaudet10, Maja Bucan1, Stephen A. Murray 
22 Sep 2016-Nature
TL;DR: It is shown that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts and reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background.
Abstract: Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.

928 citations

Journal ArticleDOI
15 Sep 2017-Science
TL;DR: By studying colon cancer models, it is found that bacteria can metabolize the chemotherapeutic drug gemcitabine into its inactive form, 2′,2′-difluorodeoxyuridine, seen primarily in Gammaproteobacteria.
Abstract: Growing evidence suggests that microbes can influence the efficacy of cancer therapies. By studying colon cancer models, we found that bacteria can metabolize the chemotherapeutic drug gemcitabine (2',2'-difluorodeoxycytidine) into its inactive form, 2',2'-difluorodeoxyuridine. Metabolism was dependent on the expression of a long isoform of the bacterial enzyme cytidine deaminase (CDDL), seen primarily in Gammaproteobacteria. In a colon cancer mouse model, gemcitabine resistance was induced by intratumor Gammaproteobacteria, dependent on bacterial CDDL expression, and abrogated by cotreatment with the antibiotic ciprofloxacin. Gemcitabine is commonly used to treat pancreatic ductal adenocarcinoma (PDAC), and we hypothesized that intratumor bacteria might contribute to drug resistance of these tumors. Consistent with this possibility, we found that of the 113 human PDACs that were tested, 86 (76%) were positive for bacteria, mainly Gammaproteobacteria.

923 citations

Journal ArticleDOI
TL;DR: A multivariate Hidden Markov Model is used to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks, providing a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.
Abstract: A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

920 citations

Journal ArticleDOI
TL;DR: The evidence for pleiotropy in contemporary genetic mapping studies, new and established analytical approaches to identifying pleiotropic effects, sources of spurious cross-phenotype effects and study design considerations are discussed.
Abstract: Genome-wide association studies have identified many variants that each affects multiple traits, particularly across autoimmune diseases, cancers and neuropsychiatric disorders, suggesting that pleiotropic effects on human complex traits may be widespread. However, systematic detection of such effects is challenging and requires new methodologies and frameworks for interpreting cross-phenotype results. In this Review, we discuss the evidence for pleiotropy in contemporary genetic mapping studies, new and established analytical approaches to identifying pleiotropic effects, sources of spurious cross-phenotype effects and study design considerations. We also outline the molecular and clinical implications of such findings and discuss future directions of research.

920 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022628
20211,727
20201,534
20191,364
20181,107