scispace - formally typeset
Search or ask a question
Institution

Eindhoven University of Technology

EducationEindhoven, Noord-Brabant, Netherlands
About: Eindhoven University of Technology is a education organization based out in Eindhoven, Noord-Brabant, Netherlands. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 22309 authors who have published 52936 publications receiving 1584164 citations. The organization is also known as: Technische Hogeschool Eindhoven & TU/e.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors examined the role of structural change in explaining aggregate productivity growth in the manufacturing sector of four Asian countries over the period 1963-1993 and found that improvements in productivity levels were widespread and depended negatively on the distance from the global technology frontier, confirming the Gerschenkronian notion of catch-up.

275 citations

Journal ArticleDOI
TL;DR: The recent advances in the preparation of emittive organic nanoparticles, including the self‐assembly of small chromophoric segments into highly ordered structures, are described.
Abstract: pi-Conjugated molecules are interesting components to prepare fluorescent nanoparticles. From the use of polymer chains that form small aggregates in water to the self-assembly of small chromophoric segments into highly ordered structures, the preparation of these materials allows to develop systems with applications as sensors or biolabels. The potential functionalization of the nanoparticles can lead to specific probing. This progress report describes the recent advances in the preparation of such emittive organic nanoparticles.

275 citations

Journal ArticleDOI
TL;DR: The most prominent driver applications for 60 GHz are considered in order to identify those environment types that need to be characterized most urgently and some research directions for future channel characterization are given.
Abstract: An extensive review of the statistical characterization of 60-GHz indoor radio channels is provided from a large number of published measurement and modeling results. First, the most prominent driver applications for 60 GHz are considered in order to identify those environment types that need to be characterized most urgently. Large-scale fading is addressed yielding path-loss parameter values for a generic 60-GHz indoor channel model as well as for the office environment in particular. In addition, the small-scale channel behavior is reviewed including the modeling of time-of-arrival and angle-of-arrival details and statistical parameters related to delay spread, angular spread and Doppler spread. Finally, some research directions for future channel characterization are given.

275 citations

Book ChapterDOI
17 Jun 2004
TL;DR: This paper introduces the approach, defines metrics, and presents a tool to mine social networks from event logs, combining concepts from workflow management and social network analysis.
Abstract: Increasingly information systems log historic information in a systematic way. Workflow management systems, but also ERP, CRM, SCM, and B2B systems often provide a so-called “event log”, i.e., a log recording the execution of activities. Unfortunately, the information in these event logs is rarely used to analyze the underlying processes. Process mining aims at improving this by providing techniques and tools for discovering process, control, data, organizational, and social structures from event logs. This paper focuses on the mining social networks. This is possible because event logs typically record information about the users executing the activities recorded in the log. To do this we combine concepts from workflow management and social network analysis. This paper introduces the approach, defines metrics, and presents a tool to mine social networks from event logs.

274 citations

Journal ArticleDOI
TL;DR: Theoretical treatments of adsorbate-surface interactions have rapidly advanced to the stage where detailed understandings of the governing structural and electronic features are readily available as discussed by the authors, and this has to date been an unattainable goal due to the limitations in both raw computer (CPU) requirements and the accuracy of available computational methods.
Abstract: Introduction A. General The heart of many commercial catalytic processes involves chemistry on transition metal particles and surfaces. The success in designing active surface ensembles, promoters, and selective poisons is inevitably tied to our knowledge of the fundamental principles which control transition metal surface chemistry. One extreme would be the rigorous description and energetic predictions for each elementary reaction step of an entire catalytic cycle from first-principle theoretical methods. While desirable, this has to date been an unattainable goal due to the limitations in both raw computer (CPU) requirements and the accuracy of the available computational methods. Recent advances in both quantum-chemical methods and computational resources, however, are driving this goal closer to reality. Theoretical treatments of adsorbate-surface interactions have rapidly advanced to the stage where detailed understandings of the governing structural and electronic features are readily available. In...

274 citations


Authors

Showing all 22539 results

NameH-indexPapersCitations
Hans Clevers199793169673
Richard H. Friend1691182140032
J. Fraser Stoddart147123996083
Jean-Luc Brédas134102685803
Ulrich S. Schubert122222985604
Christoph J. Brabec12089668188
Daniel I. Sessler11997360318
Can Li116104960617
Vikram Deshpande11173244038
D. Grahame Hardie10927653856
Wil M. P. van der Aalst10872542429
Jacob A. Moulijn10875447505
Vincent M. Rotello10876652473
Silvia Bordiga10749841413
David N. Reinhoudt107108248814
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022345
20212,907
20203,096
20192,584