scispace - formally typeset
Search or ask a question
Institution

Eindhoven University of Technology

EducationEindhoven, Noord-Brabant, Netherlands
About: Eindhoven University of Technology is a education organization based out in Eindhoven, Noord-Brabant, Netherlands. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 22309 authors who have published 52936 publications receiving 1584164 citations. The organization is also known as: Technische Hogeschool Eindhoven & TU/e.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of various innovative strategies used in material development, as well as the electrochemical properties of possible anode, cathode and electrolyte combinations are unravelled.
Abstract: The demand for electrochemical energy storage technologies is rapidly increasing due to the proliferation of renewable energy sources and the emerging markets of grid- scale battery applications. The properties of batteries and electrochemical energy storage (EES) technologies ideal for most of these applications, yet, faced with resource constraints, the ability of current lithium-ion batteries (LIB) to match this overwhelming demand is uncertain. Sodium-ion batteries (SIB) are a novel class of batteries with similar performance characteristics to LIB. Since they are composed of earth abundant elements, cheaper and utility scale battery modules can be assembled. As a result of the learning curve in LIB technology, a phenomenal progression in material development has been realised in the SIB concept. In this SIB review, various innovative strategies used in material development, as well as the electrochemical properties of possible anode, cathode and electrolyte combinations are unravelled. Attractive performance characteristics are herein evidenced, based on comparative gravimetric and volumetric energy densities to state-of-the-art LIB. Furthermore, opportunities and challenges towards commercialization are herein discussed. Combined with more industrial adaptations, the commercial prospects of SIB look promising and this challenging new technology is set to play a major role in grid-scale EES applications.

426 citations

Journal ArticleDOI
TL;DR: The structural modifications applied to DPP polymers are focused on and rationalize and explain the relationships between chemical structure and organic photovoltaic performance are rationalized.
Abstract: ConspectusConjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure–property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits.In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystalliz...

426 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit/s−1/carrier−1 on a single wavelength over a single fiber, by employing few-mode multicore fiber, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain MIMO equalization.
Abstract: Single-mode fibres with low loss and a large transmission bandwidth are a key enabler for long-haul high-speed optical communication and form the backbone of our information-driven society. However, we are on the verge of reaching the fundamental limit of single-mode fibre transmission capacity. Therefore, a new means to increase the transmission capacity of optical fibre is essential to avoid a capacity crunch. Here, by employing few-mode multicore fibre, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain multiple-input multiple-output equalization, we demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit s−1 carrier−1 (net 4 Tbit s−1 carrier−1) on a single wavelength over a single fibre. Furthermore, by combining this approach with wavelength division multiplexing with 50 wavelength carriers on a dense 50 GHz grid, a gross transmission throughput of 255 Tbit s−1 (net 200 Tbit s−1) over a 1 km fibre link is achieved. A few-mode, multicore fibre allows ultra-high-speed data transmission on a single wavelength of light.

426 citations

Journal ArticleDOI
TL;DR: In this article, a wide range of potentially suitable solvents for the dissolution and homogeneous processing of cellulose was screened and some remarkable results were obtained, for example, an odd-even effect was found for different alkyl side-chain lengths of the imidazolium chlorides which could not be observed for the bromides.

425 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations


Authors

Showing all 22539 results

NameH-indexPapersCitations
Hans Clevers199793169673
Richard H. Friend1691182140032
J. Fraser Stoddart147123996083
Jean-Luc Brédas134102685803
Ulrich S. Schubert122222985604
Christoph J. Brabec12089668188
Daniel I. Sessler11997360318
Can Li116104960617
Vikram Deshpande11173244038
D. Grahame Hardie10927653856
Wil M. P. van der Aalst10872542429
Jacob A. Moulijn10875447505
Vincent M. Rotello10876652473
Silvia Bordiga10749841413
David N. Reinhoudt107108248814
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202397
2022345
20212,907
20203,096
20192,584