scispace - formally typeset
Search or ask a question
Institution

Seoul National University

EducationSeoul, South Korea
About: Seoul National University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 65879 authors who have published 138759 publications receiving 3715170 citations. The organization is also known as: SNU & Seoul-dae.
Topics: Population, Catalysis, Thin film, Gene, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: A facultative anaerobic bacterium was isolated from a mediator-less microbial fuel cell fed with artificial wastewater containing acetate and designated as PA3 and showed electrochemically active and was the culture collection strain A. hydrophila KCTC 2358.
Abstract: A facultative anaerobic bacterium was isolated from a mediator-less microbial fuel cell fed with artificial wastewater containing acetate and designated as PA3. The isolate was identified as a strain of Aeromonas hydrophila based on its biochemical, physiological and morphological characteristics as well as 16S rDNA sequence analysis and DNA–DNA hybridization. PA3 used glucose, glycerol, pyruvate and hydrogen to reduce Fe(III), nitrate and sulfate. Cyclic voltammetry showed that PA3 was electrochemically active and was the culture collection strain A. hydrophila KCTC 2358. Electricity was generated from a fuel cell-type reactor, the anode compartment of which was inoculated with cell suspensions of the isolate or A. hydrophila KCTC 2358. The electrochemical activities are novel characteristics of A. hydrophila.

423 citations

Journal ArticleDOI
TL;DR: Frequency (f)-dependent capacitance revealed that the normal planar structure with the TiO2/MAPbI3/spiro-MeOTAD configuration showed most significant I-V hysteresis along with highest capacitance (10(-2) F/cm(2)) among the studied cell configurations.
Abstract: Mismatch of current (I)-voltage (V) curves with respect to the scan direction, so-called I–V hysteresis, raises critical issue in MAPbI3 (MA = CH3NH3) perovskite solar cell. Although ferroelectric and ion migration have been proposed as a basis for the hysteresis, origin of hysteresis has not been apparently unraveled. We report here on the origin of I–V hysteresis of perovskite solar cell that was systematically evaluated by the interface-dependent electrode polarizations. Frequency (f)-dependent capacitance (C) revealed that the normal planar structure with the TiO2/MAPbI3/spiro-MeOTAD configuration showed most significant I–V hysteresis along with highest capacitance (10–2 F/cm2) among the studied cell configurations. Substantial reduction in capacitance to 10–3 F/cm2 was observed upon replacing TiO2 with PCBM, indicative of the TiO2 layer being mainly responsible for the hysteresis. The capacitance was intensively reduced to 10–5 F/cm2 and C–f feature shifted to higher frequency for the hysteresis-fre...

423 citations

Journal ArticleDOI
TL;DR: Filtration performance proved to depend on the concentration of mixed liquor suspended solids (MLSS), and better filtration performance with suspended growth was explained by the formation of dynamic membranes with suspended Solids.

422 citations

Journal ArticleDOI
TL;DR: In patients with locally advanced HCC, OS did not differ significantly between RE and sorafenib, and the improved toxicity profile of RE may inform treatment choice in selected patients.
Abstract: Purpose Selective internal radiation therapy or radioembolization (RE) shows efficacy in unresectable hepatocellular carcinoma (HCC) limited to the liver. This study compared the safety and efficacy of RE and sorafenib in patients with locally advanced HCC. Patients and Methods SIRveNIB (selective internal radiation therapy v sorafenib), an open-label, investigator-initiated, phase III trial, compared yttrium-90 (90Y) resin microspheres RE with sorafenib 800 mg/d in patients with locally advanced HCC in a two-tailed study designed for superiority/detriment. Patients were randomly assigned 1:1 and stratified by center and presence of portal vein thrombosis. Primary end point was overall survival (OS). Efficacy analyses were performed in the intention-to-treat population and safety analyses in the treated population. Results A total of 360 patients were randomly assigned (RE, 182; sorafenib, 178) from 11 countries in the Asia-Pacific region. In the RE and sorafenib groups, 28.6% and 9.0%, respectively, failed to receive assigned therapy without significant cross-over to either group. Median OS was 8.8 and 10.0 months with RE and sorafenib, respectively (hazard ratio, 1.1; 95% CI, 0.9 to 1.4; P = .36). A total of 1,468 treatment-emergent adverse events (AEs) were reported (RE, 437; sorafenib, 1,031). Significantly fewer patients in the RE than sorafenib group had grade ≥ 3 AEs (36 of 130 [27.7%]) v 82 of 162 [50.6%]; P < .001). The most common grade ≥ 3 AEs were ascites (five of 130 [3.8%] v four of 162 [2.5%] patients), abdominal pain (three [2.3%] v two [1.2%] patients), anemia (zero v four [2.5%] patients), and radiation hepatitis (two [1.5%] v zero [0%] patients). Fewer patients in the RE group (27 of 130 [20.8%]) than in the sorafenib group (57 of 162 [35.2%]) had serious AEs. Conclusion In patients with locally advanced HCC, OS did not differ significantly between RE and sorafenib. The improved toxicity profile of RE may inform treatment choice in selected patients.

422 citations

Journal ArticleDOI
TL;DR: In this paper, a general strategy of surface modification, in which many diverse surfaces can be functionalized by immobilizing a wide variety of molecules, is presented, which functionalizes surfaces by a one-step immersion of substrates in a onepot mixture of a molecule and a catecholamine surface modification agent.
Abstract: Surface modification is one of the most important techniques in modern science and engineering. The facile introduction of a wide variety of desired properties onto virtually any material surface is an ultimate goal in surface chemistry. To achieve this goal, the incorporation of structurally diverse molecules onto any material surface is an essential capability for ideal surface modification. Here, we present a general strategy of surface modification, in which many diverse surfaces can be functionalized by immobilizing a wide variety of molecules. This strategy functionalizes surfaces by a one-step immersion of substrates in a one-pot mixture of a molecule and a catecholamine surface modification agent. This one-step procedure for surface modification represents a standard protocol to control interfacial properties.

422 citations


Authors

Showing all 66324 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Adi F. Gazdar157776104116
Alfred L. Goldberg15647488296
Yongsun Kim1562588145619
David J. Mooney15669594172
Roberto Romero1511516108321
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Teruki Kamon1422034115633
John L. Hopper140122986392
Ali Khademhosseini14088776430
Taeghwan Hyeon13956375814
Suyong Choi135149597053
Intae Yu134137289870
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023241
2022768
20218,297
20208,368
20198,175
20187,617