scispace - formally typeset
Search or ask a question

Showing papers by "Seoul National University published in 2010"


Journal ArticleDOI
05 Aug 2010-Nature
TL;DR: The results identify several novel loci associated with plasma lipids that are also associated with CAD and provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
Abstract: Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.

3,469 citations


Journal ArticleDOI
TL;DR: Pazopanib demonstrated significant improvement in PFS and tumor response compared with placebo in treatment-naive and cytokine-pretreated patients with advanced and/or metastatic RCC.
Abstract: Purpose Pazopanib is an oral angiogenesis inhibitor targeting vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and c-Kit. This randomized, double-blind, placebo-controlled phase III study evaluated efficacy and safety of pazopanib monotherapy in treatment-naive and cytokine-pretreated patients with advanced renal cell carcinoma (RCC). Patients and Methods Adult patients with measurable, locally advanced, and/or metastatic RCC were randomly assigned 2:1 to receive oral pazopanib or placebo. The primary end point was progression-free survival (PFS). Secondary end points included overall survival, tumor response rate (Response Evaluation Criteria in Solid Tumors), and safety. Radiographic assessments of tumors were independently reviewed. Results Of 435 patients enrolled, 233 were treatment naive (54%) and 202 were cytokine pretreated (46%). PFS was significantly prolonged with pazopanib compared with placebo in the overall study population (median, PFS 9.2 v 4.2 months; hazard ratio [HR], 0.46; 95% CI, 0.34 to 0.62; P .0001), the treatment-naive subpopulation (median PFS 11.1 v 2.8 months; HR, 0.40; 95% CI, 0.27 to 0.60; P .0001), and the cytokine-pretreated subpopulation (median PFS, 7.4 v 4.2 months; HR, 0.54; 95% CI, 0.35 to 0.84; P .001). The objective response rate was 30% with pazopanib compared with 3% with placebo (P .001). The median duration of response was longer than 1 year. The most common adverse events were diarrhea, hypertension, hair color changes, nausea, anorexia, and vomiting. There was no evidence of clinically important differences in quality of life for pazopanib versus placebo. Conclusion Pazopanib demonstrated significant improvement in PFS and tumor response compared with placebo in treatment-naive and cytokine-pretreated patients with advanced and/or metastatic RCC. J Clin Oncol 28:1061-1068. © 2010 by American Society of Clinical Oncology

2,260 citations


Journal ArticleDOI
TL;DR: In situ current-voltage and low-temperature conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments, which will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films.
Abstract: Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO2/Pt system during resistive switching. In situ current–voltage and low-temperature (∼130 K) conductivity measurements confirm that switching occurs by the formation and disruption of TinO2n−1 (or so-called Magneli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications. Nanoscale filaments with a Magneli structure are shown to be responsible for resistance switching in thin films of TiO2, and the properties of the filaments are directly observed during the switching process.

1,880 citations


Journal ArticleDOI
TL;DR: This critical review focuses on anode materials composed of Group IV and V elements with their composites including Ag and Mg metals as well as transition metal oxides which have been intensively investigated.
Abstract: Research to develop alternative electrode materials with high energy densities in Li-ion batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. This critical review focuses on anode materials composed of Group IV and V elements with their composites including Ag and Mg metals as well as transition metal oxides which have been intensively investigated. This critical review is devoted mainly to their electrochemical performances and reaction mechanisms (313 references).

1,497 citations


Journal ArticleDOI
18 Mar 2010-Nature
TL;DR: Comparison of genomes of three phenotypically diverse Fusarium species revealed lineage-specific genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome, putting the evolution of fungal pathogenicity into a new perspective.
Abstract: Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.

1,386 citations


Journal ArticleDOI
21 Jan 2010-Nature
TL;DR: It is reported that water and clay, when mixed with a very small proportion of organic components, quickly form a transparent hydrogel, which can be moulded into shape-persistent, free-standing objects owing to its exceptionally great mechanical strength, and rapidly and completely self-heals when damaged.
Abstract: With the world's focus on reducing our dependency on fossil-fuel energy, the scientific community can investigate new plastic materials that are much less dependent on petroleum than are conventional plastics. Given increasing environmental issues, the idea of replacing plastics with water-based gels, so-called hydrogels, seems reasonable. Here we report that water and clay (2-3 per cent by mass), when mixed with a very small proportion (<0.4 per cent by mass) of organic components, quickly form a transparent hydrogel. This material can be moulded into shape-persistent, free-standing objects owing to its exceptionally great mechanical strength, and rapidly and completely self-heals when damaged. Furthermore, it preserves biologically active proteins for catalysis. So far no other hydrogels, including conventional ones formed by mixing polymeric cations and anions or polysaccharides and borax, have been reported to possess all these features. Notably, this material is formed only by non-covalent forces resulting from the specific design of a telechelic dendritic macromolecule with multiple adhesive termini for binding to clay.

1,360 citations


Journal ArticleDOI
TL;DR: In this article, the authors place the concept of open innovation in the context of SMEs, suggest the input of an intermediary in facilitating innovation, and report accounts of Korean SMEs' success in working with an intermediary.

1,310 citations


Proceedings ArticleDOI
13 Jun 2010
TL;DR: A novel tracking algorithm that can work robustly in a challenging scenario such that several kinds of appearance and motion changes of an object occur at the same time is proposed.
Abstract: We propose a novel tracking algorithm that can work robustly in a challenging scenario such that several kinds of appearance and motion changes of an object occur at the same time. Our algorithm is based on a visual tracking decomposition scheme for the efficient design of observation and motion models as well as trackers. In our scheme, the observation model is decomposed into multiple basic observation models that are constructed by sparse principal component analysis (SPCA) of a set of feature templates. Each basic observation model covers a specific appearance of the object. The motion model is also represented by the combination of multiple basic motion models, each of which covers a different type of motion. Then the multiple basic trackers are designed by associating the basic observation models and the basic motion models, so that each specific tracker takes charge of a certain change in the object. All basic trackers are then integrated into one compound tracker through an interactive Markov Chain Monte Carlo (IMCMC) framework in which the basic trackers communicate with one another interactively while run in parallel. By exchanging information with others, each tracker further improves its performance, which results in increasing the whole performance of tracking. Experimental results show that our method tracks the object accurately and reliably in realistic videos where the appearance and motion are drastically changing over time.

1,234 citations


Journal ArticleDOI
TL;DR: A survey of the various model-based FDIR methods developed in the last decade is presented, and various techniques of implementing reconfigurable control strategy in response to faults are discussed.
Abstract: Fault detection, isolation, and reconfiguration (FDIR) is an important and challenging problem in many engineering applications and continues to be an active area of research in the control community. This paper presents a survey of the various model-based FDIR methods developed in the last decade. In the paper, the FDIR problem is divided into the fault detection and isolation (FDI) step, and the controller reconfiguration step. For FDI, we discuss various model-based techniques to generate residuals that are robust to noise, unknown disturbance, and model uncertainties, as well as various statistical techniques of testing the residuals for abrupt changes (or faults). We then discuss various techniques of implementing reconfigurable control strategy in response to faults.

1,217 citations


Journal ArticleDOI
TL;DR: The fifth edition of the Sloan Digital Sky Survey (SDSS) Quasar catalog as discussed by the authors contains 105,783 spectroscopically confirmed quasars, which is based upon the SDSS Seventh Data Release.
Abstract: We present the fifth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog, which is based upon the SDSS Seventh Data Release. The catalog, which contains 105,783 spectroscopically confirmed quasars, represents the conclusion of the SDSS-I and SDSS-II quasar survey. The catalog consists of the SDSS objects that have luminosities larger than Mi = –22.0 (in a cosmology with H 0 = 70 km s–1 Mpc–1, Ω M = 0.3, and ΩΛ = 0.7), have at least one emission line with FWHM larger than 1000 km s–1 or have interesting/complex absorption features, are fainter than i 15.0, and have highly reliable redshifts. The catalog covers an area of 9380 deg2. The quasar redshifts range from 0.065 to 5.46, with a median value of 1.49; the catalog includes 1248 quasars at redshifts greater than 4, of which 56 are at redshifts greater than 5. The catalog contains 9210 quasars with i < 18; slightly over half of the entries have i < 19. For each object the catalog presents positions accurate to better than 01 rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 A at a spectral resolution of 2000; the spectra can be retrieved from the SDSS public database using the information provided in the catalog. Over 96% of the objects in the catalog were discovered by the SDSS. We also include a supplemental list of an additional 207 quasars with SDSS spectra whose archive photometric information is incomplete.

1,110 citations


Journal ArticleDOI
TL;DR: Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells and open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.
Abstract: Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active gold-silver core-shell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.

Journal ArticleDOI
TL;DR: Recommendations on the management of hepatocellular carcinoma were presented at the fourth APASL single topic conference on viral-related HCC at Bali, Indonesia and approved by the participants of the conference.
Abstract: Introduction The Asian Pacific Association for the Study of the Liver (APASL) convened an international working party on the management of hepatocellular carcinoma (HCC) in December 2008 to develop consensus recommendations.

Journal ArticleDOI
TL;DR: Very light axion (theory, supersymmetrization, and models) using recent particle, astrophysical, and cosmological data, and present prospects for its discovery is reviewed here.
Abstract: Current upper bounds on the neutron electric dipole moment constrain the physically observable quantum chromodynamic (QCD) vacuum angle $|\overline{\ensuremath{\theta}}|\ensuremath{\lesssim}{10}^{\ensuremath{-}11}$. Since QCD explains a great deal of experimental data from the $100\phantom{\rule{0.3em}{0ex}}\mathrm{MeV}$ to the TeV scale, it is desirable to explain this smallness of $|\overline{\ensuremath{\theta}}|$ in the QCD framework; this is the strong $CP$ problem. There now exist two plausible solutions to this problem, one of which leads to the existence of a very light axion. The axion decay constant window, ${10}^{9}\ensuremath{\lesssim}{F}_{a}\ensuremath{\lesssim}{10}^{12}\phantom{\rule{0.3em}{0ex}}\mathrm{GeV}$ for an $O(1)$ initial misalignment angle ${\ensuremath{\theta}}_{1}$, has been obtained from astrophysical and cosmological data. For ${F}_{a}\ensuremath{\gtrsim}{10}^{12}\phantom{\rule{0.3em}{0ex}}\mathrm{GeV}$ with ${\ensuremath{\theta}}_{1}lO(1)$, axions may constitute a significant fraction of the dark matter of the universe. The supersymmetrized axion solution of the strong $CP$ problem introduces its superpartner the axino, which might have affected the evolution of the Universe significantly. The very light axion (theory, supersymmetrization, and models) using recent particle, astrophysical, and cosmological data, and present prospects for its discovery is reviewed here.

Journal ArticleDOI
TL;DR: C cyanostilbene-based highly luminescent molecular sheets which exhibit two-color fluorescence switching in response to pressure, temperature, and solvent vapor are reported, which provides a novel concept of rewritable fluorescent optical recording media.
Abstract: Color tuning and switching of the solid-state luminescence of organic materials are attractive subjects for both the fundamental research and practical applications such as optical recording. We report herein cyanostilbene-based highly luminescent molecular sheets which exhibit two-color fluorescence switching in response to pressure, temperature, and solvent vapor. The origin for the multistimuli luminescence switching is the two-directional shear-sliding capability of molecular sheets, which are formed via intermolecular multiple C−H···N and C−H···O hydrogen bonds. The resulting two distinctive crystal phases are promoted by different modes of local dipole coupling, which cause a substantial alternation of π−π overlap. These changes can be directly correlated with the subsequent intermolecular excitonic and excimeric coupling in both phases, as demonstrated by an in-depth theory-assisted spectroscopic and structural study. Finally, we have prepared a first device demonstrator for rewritable fluorescent ...

Journal ArticleDOI
09 Sep 2010-Nature
TL;DR: It is shown that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin–protein conjugates both in vitro and in cells.
Abstract: Proteasomes, the primary mediators of ubiquitin-protein conjugate degradation, are regulated through complex and poorly understood mechanisms. Here we show that USP14, a proteasome-associated deubiquitinating enzyme, can inhibit the degradation of ubiquitin-protein conjugates both in vitro and in cells. A catalytically inactive variant of USP14 has reduced inhibitory activity, indicating that inhibition is mediated by trimming of the ubiquitin chain on the substrate. A high-throughput screen identified a selective small-molecule inhibitor of the deubiquitinating activity of human USP14. Treatment of cultured cells with this compound enhanced degradation of several proteasome substrates that have been implicated in neurodegenerative disease. USP14 inhibition accelerated the degradation of oxidized proteins and enhanced resistance to oxidative stress. Enhancement of proteasome activity through inhibition of USP14 may offer a strategy to reduce the levels of aberrant proteins in cells under proteotoxic stress.

Journal ArticleDOI
TL;DR: The pre-print version of the Published Article can be accessed from the link below - Copyright @ 2010 Springer Verlag as discussed by the authors, which can be viewed as a preprint of the published article.
Abstract: This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2010 Springer Verlag

Journal ArticleDOI
TL;DR: It is concluded that this trial is safe and is thus ongoing, and there was no significance difference in the morbidity and mortality between the 2 groups.
Abstract: Objective The aim of this study was to evaluate the safety of this trial with respect to morbidity and mortality. Summary background data Laparoscopic-assisted distal gastrectomy (LADG) is rapidly gaining popularity. However, there is limited evidence regarding its oncologic safety. We therefore conducted a phase III multicenter, prospective, randomized study comparing LADG with open gastrectomy (ODG). Methods Patient eligibility criteria were pathologically-proven adenocarcinoma, 20 to 80 years of age, preoperative stage I, no history of other cancer, chemotherapy, or radiotherapy. The primary end point was to determine whether there is a difference in overall survival between 2 groups. The morbidity and mortality were compared to evaluate the safety of this trial. The time was decided on the hypothesis that the morbidity of this trial was not significantly different from that of previous reports on open gastric cancer surgeries (17%-20%). This study is registered at ClinicalTrials.gov and carries the following ID number: NCT00452751. Results A total of 342 patients were randomized (LADG, 179 patients; ODG, 161 patients) between January 1, 2006 and July 19, 2007. There were no significant differences between the 2 groups in age, gender, and comorbidities. The postoperative complication rates of the LADG and ODG groups were 10.5% (17/179) and 14.7% (24/163), respectively (P = 0.137). Reoperations were required in 3 cases each group. The postoperative mortality was 1.1% (2/179) and 0% (0/163) in the LADG and ODG groups (P = 0.497), respectively. Conclusion There was no significance difference in the morbidity and mortality between the 2 groups. Therefore, we conclude that this trial is safe and is thus ongoing.

Journal ArticleDOI
TL;DR: It is shown that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns.
Abstract: We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast--the only other eukaryote for which a comprehensive knockout library exists--revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.

Journal ArticleDOI
TL;DR: In vivo passive targeting and accumulation of the nanoparticles at the tumor sites was confirmed by both T2 MR and fluorescence imaging, and apoptotic morphology was clearly detected in tumor tissues of mice treated with DOX loaded nanocomposite nanoparticles, demonstrating that DOX was successfully delivered to the tumor Sites and its anticancer activity was retained.
Abstract: Highly versatile nanocomposite nanoparticles were synthesized by decorating the surface of mesoporous dye-doped silica nanoparticles with multiple magnetite nanocrystals. The superparamagnetic property of the magnetite nanocrystals enabled the nanoparticles to be used as a contrast agent in magnetic resonance (MR) imaging, and the dye molecule in the silica framework imparted optical imaging modality. Integrating a multitude of magnetite nanocrystals on the silica surface resulted in remarkable enhancement of MR signal due to the synergistic magnetism. An anticancer drug, doxorubicin (DOX), could be loaded in the pores and induced efficient cell death. In vivo passive targeting and accumulation of the nanoparticles at the tumor sites was confirmed by both T2 MR and fluorescence imaging. Furthermore, apoptotic morphology was clearly detected in tumor tissues of mice treated with DOX loaded nanocomposite nanoparticles, demonstrating that DOX was successfully delivered to the tumor sites and its anticancer activity was retained.

Journal ArticleDOI
TL;DR: It seemed that AgNPs were ionized in the cells to cause cytotoxicity by a Trojan-horse type mechanism suggested by previously reported studies.

Journal ArticleDOI
TL;DR: The synthesis of graphene using a modified Hummer's method and its application for the electrochemical detection of dopamine was reported and the capacity of graphene modified electrode for selective detection of serotonin was confirmed in a sufficient amount of ascorbic acid.

Journal ArticleDOI
Stephen Anthony Eales1, Loretta Dunne2, David L. Clements3, Asantha Cooray4, G. de Zotti5, G. de Zotti6, Simon Dye1, Rob Ivison7, Matt J. Jarvis8, Guilaine Lagache9, Guilaine Lagache10, Steve Maddox2, Mattia Negrello11, Steve Serjeant11, Mark Thompson8, E. van Kampen12, Alexandre Amblard4, Paola Andreani12, Maarten Baes13, Alexandre Beelen9, Alexandre Beelen10, George J. Bendo3, Dominic J. Benford12, Dominic J. Benford14, Frank Bertoldi13, Frank Bertoldi15, James J. Bock16, D. G. Bonfield8, Alessandro Boselli17, C. Bridge10, V. Buat17, Denis Burgarella17, Raymond G. Carlberg18, Antonio Cava, Pierre Chanial3, S. Charlot19, N. Christopher20, Peter Coles1, Luca Cortese1, Aliakbar Dariush1, E. da Cunha21, Gavin Dalton22, Gavin Dalton20, Luigi Danese23, Helmut Dannerbauer23, Simon P. Driver, James Dunlop7, Lulu Fan18, Duncan Farrah18, David T. Frayer16, Carlos S. Frenk24, James E. Geach24, Jonathan P. Gardner14, Haley Louise Gomez1, J. González-Nuevo18, Eduardo Gonzalez-Solares25, Matthew Joseph Griffin1, Martin J. Hardcastle8, Evanthia Hatziminaoglou12, D. Herranz26, David H. Hughes, Edo Ibar7, Woong-Seob Jeong27, Cedric G. Lacey24, Andrea Lapi28, Andy Lawrence7, Myung Gyoon Lee29, Lerothodi Leonard Leeuw28, Jochen Liske12, M. López-Caniego23, Th. Müller23, Kirpal Nandra3, P. Panuzzo30, Andreas Papageorgiou1, G. Patanchon30, John A. Peacock7, C. P. Pearson22, Steven Phillipps, Michael Pohlen1, Cristina Popescu31, Steve Rawlings20, E. E. Rigby2, M. Rigopoulou20, Aaron S. G. Robotham32, Giulia Rodighiero6, Anne E. Sansom31, Benjamin L. Schulz, Douglas Scott33, D. J. B. Smith2, B. Sibthorpe7, Ian Smail24, Jamie Stevens8, William J. Sutherland34, Tsutomu T. Takeuchi35, Jonathan Tedds36, P. Temi37, Richard J. Tuffs23, Markos Trichas3, Mattia Vaccari6, Ivan Valtchanov38, P. van der Werf39, Aprajita Verma20, J. Vieria39, Catherine Vlahakis39, Glenn J. White11, Glenn J. White22 
TL;DR: The Herschel ATLAS project as discussed by the authors is the largest open-time key project that will be carried out on the Herschel Space Observatory, and it will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragala surveys combined, in five far-infrared and submillimeter bands.
Abstract: The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

Journal ArticleDOI
29 Oct 2010-Science
TL;DR: Graphene can replace sapphire crystals as the substrate for the growth of gallium nitride layers and the layered structure of a graphene substrate made it possible to easily transfer GaN thin films and GaN-based LEDs onto foreign substrates such as glass, metal, or plastic.
Abstract: We fabricated transferable gallium nitride (GaN) thin films and light-emitting diodes (LEDs) using graphene-layered sheets. Heteroepitaxial nitride thin films were grown on graphene layers by using high-density, vertically aligned zinc oxide nanowalls as an intermediate layer. The nitride thin films on graphene layers show excellent optical characteristics at room temperature, such as stimulated emission. As one of the examples for device applications, LEDs that emit strong electroluminescence emission under room illumination were fabricated. Furthermore, the layered structure of a graphene substrate made it possible to easily transfer GaN thin films and GaN-based LEDs onto foreign substrates such as glass, metal, or plastic.

Journal ArticleDOI
TL;DR: This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.
Abstract: Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

Journal ArticleDOI
TL;DR: It is proposed that controlling cell–material interactions on the nanoscale can stipulate structure and function on the tissue level and yield novel insights into in vivo tissue physiology, while providing materials for tissue repair.
Abstract: Heart tissue possesses complex structural organization on multiple scales, from macro- to nano-, but nanoscale control of cardiac function has not been extensively analyzed. Inspired by ultrastructural analysis of the native tissue, we constructed a scalable, nanotopographically controlled model of myocardium mimicking the in vivo ventricular organization. Guided by nanoscale mechanical cues provided by the underlying hydrogel, the tissue constructs displayed anisotropic action potential propagation and contractility characteristic of the native tissue. Surprisingly, cell geometry, action potential conduction velocity, and the expression of a cell–cell coupling protein were exquisitely sensitive to differences in the substratum nanoscale features of the surrounding extracellular matrix. We propose that controlling cell–material interactions on the nanoscale can stipulate structure and function on the tissue level and yield novel insights into in vivo tissue physiology, while providing materials for tissue repair.

Journal ArticleDOI
TL;DR: The Spitzer Survey of Stellar Structure in Galaxies (S^4G) as mentioned in this paper is a collection of 2331 galaxies using the Infrared Array Camera (IRAC) at 3.6 and 4.5 μm.
Abstract: The Spitzer Survey of Stellar Structure in Galaxies (S^4G) is an Exploration Science Legacy Program approved for the Spitzer post–cryogenic mission. It is a volume-, magnitude-, and size-limited (d < 40 Mpc, |b|> 30°,m_(Bcorr) 1') survey of 2331 galaxies using the Infrared Array Camera (IRAC) at 3.6 and 4.5 μm. Each galaxy is observed for 240 s and mapped to ≥ 1:5 × D_(25). The final mosaicked images have a typical 1 σ rms noise level of 0.0072 and 0:0093 MJy sr^-1 at 3.6 and 4.5 μm, respectively. Our azimuthally averaged surface brightness profile typically traces isophotes at μ_(3.6μm (AB)(1σ) ~ 27 mag arcsec^(-2), equivalent to a stellar mass surface density of ~1 M_⊙pc^(-2). S^4G thus provides an unprecedented data set for the study of the distribution of mass and stellar structures in the local universe. This large, unbiased, and extremely deep sample of all Hubble types from dwarfs to spirals to ellipticals will allow for detailed structural studies, not only as a function of stellar mass, but also as a function of the local environment. The data from this survey will serve as a vital testbed for cosmological simulations predicting the stellar mass properties of present-day galaxies. This article introduces the survey and describes the sample selection, the significance of the 3.6 and 4.5 μm bands for this study, and the data collection and survey strategies. We describe the S^4G data analysis pipeline and present measurements for a first set of galaxies, observed in both the cryogenic and warm mission phases of Spitzer. For every galaxy we tabulate the galaxy diameter, position angle, axial ratio, inclination at μ_(3.6μm)(AB) = 25:5, and 26:5 mag arcsec^(-2) (equivalent to ≈μ_B(AB) = 27:2 and 28:2 mag arcsec^(-2), respectively). These measurements will form the initial S^4G catalog of galaxy properties. We also measure the total magnitude and the azimuthally averaged radial profiles of ellipticity, position angle, surface brightness, and color. Finally, using the galaxy-fitting code GALFIT, we deconstruct each galaxy into its main constituent stellar components: the bulge/spheroid, disk, bar, and nuclear point source, where necessary. Together, these data products will provide a comprehensive and definitive catalog of stellar structures, mass, and properties of galaxies in the nearby universe and will enable a variety of scientific investigations, some of which are highlighted in this introductory S^4G survey paper.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity, and showed that it is a nonlinearly realized W ∞ algebra with classical central charges.
Abstract: We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1, 1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. We then study residual gauge transformation, the corresponding surface terms and their Poisson bracket algebra. We find that the asymptotic symmetry algebra is a nonlinearly realized W ∞ algebra with classical central charges. We discuss implications of our results to quantum gravity and to various situations in string theory.

Journal ArticleDOI
TL;DR: The target organ for the silver nanoparticles was found to be the liver in both the male and female rats, and a NOAEL of 30 mg/kg and the lowest observable adverse effect level of 125mg/kg are suggested from the present study.
Abstract: The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys. The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study.

Journal ArticleDOI
TL;DR: In this paper, the authors examine the persuasiveness of online consumer product reviews and find that consumers who evaluate products associated with promotion consumption goals perceive positive reviews to be more persuasive than negative ones (i.e., a positivity bias).

Book ChapterDOI
05 Sep 2010
TL;DR: This work proposes a robust graph matching algorithm against outliers and deformation by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph and achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences.
Abstract: Graph matching is an essential problem in computer vision and machine learning. In this paper, we introduce a random walk view on the problem and propose a robust graph matching algorithm against outliers and deformation. Matching between two graphs is formulated as node selection on an association graph whose nodes represent candidate correspondences between the two graphs. The solution is obtained by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph. Our algorithm achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences. In a practical sense, our work is of particular importance since the real-world matching problem is made difficult by the presence of noise and outliers. Extensive and comparative experiments demonstrate that it outperforms the state-of-the-art graph matching algorithms especially in the presence of outliers and deformation.