scispace - formally typeset
Search or ask a question
Institution

Seoul National University

EducationSeoul, South Korea
About: Seoul National University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 65879 authors who have published 138759 publications receiving 3715170 citations. The organization is also known as: SNU & Seoul-dae.
Topics: Population, Catalysis, Thin film, Gene, Cancer


Papers
More filters
Journal ArticleDOI
12 Aug 2016-Science
TL;DR: An ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts is demonstrated, which can be operated under more than 1000% areal strain without sacrificing its functionalities.
Abstract: Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games.

749 citations

Journal ArticleDOI
Paul A. Northcott1, Paul A. Northcott2, David Shih2, John Peacock2, Livia Garzia2, A. Sorana Morrissy2, Thomas Zichner, Adrian M. Stütz, Andrey Korshunov1, Jüri Reimand2, Steven E. Schumacher3, Rameen Beroukhim4, Rameen Beroukhim3, David W. Ellison, Christian R. Marshall2, Anath C. Lionel2, Stephen C. Mack2, Adrian M. Dubuc2, Yuan Yao2, Vijay Ramaswamy2, Betty Luu2, Adi Rolider2, Florence M.G. Cavalli2, Xin Wang2, Marc Remke2, Xiaochong Wu2, Readman Chiu5, Andy Chu5, Eric Chuah5, Richard Corbett5, Gemma Hoad5, Shaun D. Jackman5, Yisu Li5, Allan Lo5, Karen Mungall5, Ka Ming Nip5, Jenny Q. Qian5, Anthony Raymond5, Nina Thiessen5, Richard Varhol5, Inanc Birol5, Richard A. Moore5, Andrew J. Mungall5, Robert A. Holt5, Daisuke Kawauchi, Martine F. Roussel, Marcel Kool1, David T.W. Jones1, Hendrick Witt6, Africa Fernandez-L7, Anna Kenney8, Robert J. Wechsler-Reya9, Peter B. Dirks2, Tzvi Aviv2, Wiesława Grajkowska, Marta Perek-Polnik, Christine Haberler10, Olivier Delattre11, Stéphanie Reynaud11, François Doz11, Sarah S. Pernet-Fattet12, Byung Kyu Cho13, Seung-Ki Kim13, Kyu-Chang Wang13, Wolfram Scheurlen, Charles G. Eberhart14, Michelle Fèvre-Montange15, Anne Jouvet15, Ian F. Pollack16, Xing Fan17, Karin M. Muraszko17, G. Yancey Gillespie18, Concezio Di Rocco19, Luca Massimi19, Erna M.C. Michiels20, Nanne K. Kloosterhof20, Pim J. French20, Johan M. Kros20, James M. Olson21, Richard G. Ellenbogen22, Karel Zitterbart23, Leos Kren23, Reid C. Thompson8, Michael K. Cooper8, Boleslaw Lach24, Boleslaw Lach25, Roger E. McLendon26, Darell D. Bigner26, Adam M. Fontebasso27, Steffen Albrecht27, Steffen Albrecht28, Nada Jabado27, Janet C. Lindsey29, Simon Bailey29, Nalin Gupta30, William A. Weiss30, László Bognár31, Almos Klekner31, Timothy E. Van Meter, Toshihiro Kumabe32, Teiji Tominaga32, Samer K. Elbabaa33, Jeffrey R. Leonard34, Joshua B. Rubin34, Linda M. Liau35, Erwin G. Van Meir36, Maryam Fouladi37, Hideo Nakamura38, Giuseppe Cinalli, Miklós Garami39, Peter Hauser39, Ali G. Saad40, Achille Iolascon41, Shin Jung42, Carlos Gilberto Carlotti43, Rajeev Vibhakar44, Young Shin Ra45, Shenandoah Robinson, Massimo Zollo41, Claudia C. Faria2, Jennifer A. Chan46, Michael J. Levy21, Poul H. Sorensen5, Matthew Meyerson3, Scott L. Pomeroy3, Yoon Jae Cho47, Gary D. Bader2, Uri Tabori2, Cynthia Hawkins2, Eric Bouffet2, Stephen W. Scherer2, James T. Rutka2, David Malkin2, Steven C. Clifford29, Steven J.M. Jones5, Jan O. Korbel, Stefan M. Pfister6, Stefan M. Pfister1, Marco A. Marra5, Michael D. Taylor2 
02 Aug 2012-Nature
TL;DR: Somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas are reported, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Groups 4, which suggest future avenues for rational, targeted therapy.
Abstract: Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.

749 citations

Journal ArticleDOI
Lars G. Fritsche1, Lars G. Fritsche2, Wei Chen3, Wei Chen1  +182 moreInstitutions (60)
TL;DR: A collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry, identifies 19 loci associated at P < 5 × 10−8, which show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis.
Abstract: Age-related macular degeneration (AMD) is a common cause of blindness in older individuals To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry We identified 19 loci associated at P < 5 × 10(-8) These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined Our findings provide new directions for biological, genetic and therapeutic studies of AMD

745 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +961 moreInstitutions (100)
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Abstract: The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes (≳25M⊙) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than ∼1/2 of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1Gpc−3yr−1) from both types of formation models. The low measured redshift (z∼0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either binary black-hole formation in a low-mass galaxy in the local Universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-black-hole formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and gravitational-wave detectors in space.

742 citations

Journal ArticleDOI
TL;DR: Seong, Sang Cheol; Kim, Yeon-Yong; Khang, Young-ho; Park, Jong Heon; Kang, Hee-Jin; Lee, Heeyoung; Do, Cheol-Ho; Song, Jong-Sun; Bang, Ji Hyon; Ha, Seongjun;Lee, Eun-Joo; Shin, Soon Ae.
Abstract: Seong, Sang Cheol; Kim, Yeon-Yong; Khang, Young-Ho; Park, Jong Heon; Kang, Hee-Jin; Lee, Heeyoung; Do, Cheol-Ho; Song, Jong-Sun; Bang, Ji Hyon; Ha, Seongjun; Lee, Eun-Joo; Shin, Soon AeOctober, 2016Data resource profile,Articles,[Wentworthville, Australia]International Epidemiological Association,6

742 citations


Authors

Showing all 66324 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Adi F. Gazdar157776104116
Alfred L. Goldberg15647488296
Yongsun Kim1562588145619
David J. Mooney15669594172
Roberto Romero1511516108321
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Teruki Kamon1422034115633
John L. Hopper140122986392
Ali Khademhosseini14088776430
Taeghwan Hyeon13956375814
Suyong Choi135149597053
Intae Yu134137289870
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023241
2022768
20218,297
20208,368
20198,175
20187,617