scispace - formally typeset
Search or ask a question
Institution

Seoul National University

EducationSeoul, South Korea
About: Seoul National University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 65879 authors who have published 138759 publications receiving 3715170 citations. The organization is also known as: SNU & Seoul-dae.
Topics: Population, Catalysis, Thin film, Gene, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: Aifantis et al. as discussed by the authors have shown that tin sulfide-based nanostructures have remarkable enhanced electrochemical properties compared to their bulk counterparts owing to nanoscale characteristics that include large surface areas, finite lateral sizes, and enhanced open-edge morphologies.
Abstract: Two-dimensional (2D) layered nanostructures have received increasing interest due to their unique nanoscale phenomena and their potential applications ranging from electronics and energy to catalysis. Recent investigation has revealed that laterally confined layered nanocrystals (LCLN) have remarkably enhanced electrochemical properties compared to their bulk counterparts owing to nanoscale characteristics that include large surface areas, finite lateral sizes, and enhanced open-edge morphologies. Among the variety of layered materials that have been described, tin sulfides are of particular interest because of their unique structural properties. SnS2 has a layered CdI2-type structure, composed of tin atoms sandwiched between two layers of hexagonally disposed closepacked sulfur atoms. The 2D layered characteristics of this substance are revealed in alkali metal intercalation phenomena, and by investigating anisotropy of properties such as electric and photoelectric conductivity. Owing to their large theoretical capacities for battery applications, bulk or micron sized tin-based materials have been extensively studied as possible alternatives for commercially available carbon electrodes. However, the main drawback of this system has been stemming from the large volume changes and accompanying sharp decrease in capacity that occur during electrochemical cycles. Aifantis et al. have reported that active sites with spherical and smaller volume fraction could improve electrochemical properties of anode materials from the view point of fracture mechanics. Other researchers also have reported that nanoscale tin sulfide-based materials would lead to an improvement in the cycling stability of these systems. Especially, layered SnS2 nanoplates with swelling tolerant hosting spaces and enhanced guest accessibility would provide enhanced diffusion for Li ion, and lead to the formation of Li-Sn alloy during the cycle, and improve the

499 citations

Journal ArticleDOI
TL;DR: It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli might also be inactivated by other ROS, such as O2·− and H2O2, according to the present results.
Abstract: Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO2 photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (·OH), which is generated on the surface of UV-illuminated TiO2, plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H2O2 and O2·−, etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe2+, were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O2·− and H2O2, according to the present results.

499 citations

Book ChapterDOI
05 Sep 2010
TL;DR: This work proposes a robust graph matching algorithm against outliers and deformation by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph and achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences.
Abstract: Graph matching is an essential problem in computer vision and machine learning. In this paper, we introduce a random walk view on the problem and propose a robust graph matching algorithm against outliers and deformation. Matching between two graphs is formulated as node selection on an association graph whose nodes represent candidate correspondences between the two graphs. The solution is obtained by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph. Our algorithm achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences. In a practical sense, our work is of particular importance since the real-world matching problem is made difficult by the presence of noise and outliers. Extensive and comparative experiments demonstrate that it outperforms the state-of-the-art graph matching algorithms especially in the presence of outliers and deformation.

498 citations

Journal ArticleDOI
Ewen F. Kirkness1, Brian J. Haas1, Brian J. Haas2, Weilin Sun3, Henk R. Braig4, M. Alejandra Perotti5, John M. Clark6, Si Hyeock Lee7, Hugh M. Robertson3, Ryan C. Kennedy8, Eran Elhaik9, Daniel Gerlach10, Daniel Gerlach11, Evgenia V. Kriventseva10, Evgenia V. Kriventseva11, Christine G. Elsik12, Christine G. Elsik13, Dan Graur9, Catherine A. Hill14, Jan A. Veenstra15, Brian P. Walenz1, Jose M. C. Tubio16, José M. C. Ribeiro17, Julio Rozas18, J. Spencer Johnston13, Justin T. Reese13, Aleksandar Popadić19, Marta Tojo16, Didier Raoult, David L. Reed20, Yoshinori Tomoyasu21, Yoshinori Tomoyasu22, Emily C. Kraus21, Omprakash Mittapalli23, Venu M. Margam14, Hongmei Li3, Jason M. Meyer14, Reed M. Johnson3, Jeanne Romero-Severson8, Janice P. Vanzee14, David Alvarez-Ponce18, Filipe G. Vieira18, Montserrat Aguadé18, Sara Guirao-Rico18, Juan Manuel Anzola13, Kyong Sup Yoon6, Joseph P. Strycharz6, Maria F. Unger8, Scott Christley8, Neil F. Lobo8, Manfredo J. Seufferheld, NaiKuan Wang, Gregory A. Dasch24, Claudio J. Struchiner25, Greg Madey8, Linda Hannick1, Shelby L. Bidwell1, Vinita Joardar1, Elisabet Caler1, Renfu Shao26, Stephen C. Barker26, Stephen L. Cameron, Robert V. Bruggner8, Allison A. Regier8, Justin Johnson1, Lakshmi D. Viswanathan1, T. Utterback1, Granger G. Sutton1, Daniel Lawson, Robert M. Waterhouse10, Robert M. Waterhouse11, J. Craig Venter1, Robert L. Strausberg1, May R. Berenbaum, Frank H. Collins8, Evgeny M. Zdobnov27, Evgeny M. Zdobnov10, Evgeny M. Zdobnov11, Barry R. Pittendrigh 
TL;DR: The genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola are presented, providing a reference for studies of holometabolous insects.
Abstract: As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

498 citations

Journal ArticleDOI
TL;DR: In this article, the effect of a tiny gap in a metal substrate on incident terahertz radiation in the regime where the gap's dimensions are smaller than the metal's skin-depth is investigated.
Abstract: The effect of a tiny gap in a metal substrate on incident terahertz radiation in the regime where the gap's dimensions are smaller than the metal's skin-depth are investigated. The results and theoretical analysis show that the gap acts as a capacitor charged by light-induced currents, and dramatically enhances the local electric field.

497 citations


Authors

Showing all 66324 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Adi F. Gazdar157776104116
Alfred L. Goldberg15647488296
Yongsun Kim1562588145619
David J. Mooney15669594172
Roberto Romero1511516108321
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Teruki Kamon1422034115633
John L. Hopper140122986392
Ali Khademhosseini14088776430
Taeghwan Hyeon13956375814
Suyong Choi135149597053
Intae Yu134137289870
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023241
2022768
20218,297
20208,368
20198,175
20187,617