scispace - formally typeset
Search or ask a question
Institution

University of Colorado Denver

EducationDenver, Colorado, United States
About: University of Colorado Denver is a education organization based out in Denver, Colorado, United States. It is known for research contribution in the topics: Population & Health care. The organization has 27444 authors who have published 57213 publications receiving 2539937 citations. The organization is also known as: CU Denver & UCD.


Papers
More filters
Journal ArticleDOI
02 Jul 2015
TL;DR: This Primer discusses the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases.
Abstract: Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death - a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14xVI1.

384 citations

Journal ArticleDOI
TL;DR: This Review focuses on the defining features and emerging generalities regarding how NKT cells specifically recognize self, microbial and synthetic lipid-based antigens that are presented by CD1d.
Abstract: Natural killer T (NKT) cells are innate-like T cells that rapidly produce a variety of cytokines following T cell receptor (TCR) activation and can shape the immune response in many different settings. There are two main NKT cell subsets: type I NKT cells are typically characterized by the expression of a semi-invariant TCR, whereas the TCRs expressed by type II NKT cells are more diverse. This Review focuses on the defining features and emerging generalities regarding how NKT cells specifically recognize self, microbial and synthetic lipid-based antigens that are presented by CD1d. Such information is vitally important to better understand, and fully harness, the therapeutic potential of NKT cells.

384 citations

Journal ArticleDOI
01 Mar 2013-Science
TL;DR: The process of neural tube development and how defects in this process lead to NTDs are reviewed and it is suggested that discovering the genetic risk factors for these serious birth defects could provide ways to prevent and treat neural tube defects.
Abstract: Human birth defects are a major public health burden: The Center for Disease Control estimates that 1 of every 33 United States newborns presents with a birth defect, and worldwide the estimate approaches 6% of all births. Among the most common and debilitating of human birth defects are those affecting the formation of the neural tube, the precursor to the central nervous system. Neural tube defects (NTDs) arise from a complex combination of genetic and environmental interactions. Although substantial advances have been made in the prevention and treatment of these malformations, NTDs remain a substantial public health problem, and we are only now beginning to understand their etiology. Here, we review the process of neural tube development and how defects in this process lead to NTDs, both in humans and in the animal models that serve to inform our understanding of these processes. The insights we are gaining will help generate new intervention strategies to tackle the clinical challenges and to alleviate the personal and societal burdens that accompany these defects.

383 citations

Book ChapterDOI
01 Jan 2010
TL;DR: The distinction between in-service training and professional development is considered, and the current literature on features of high-quality PD is discussed, to provide examples of programs that illustrate these features and consider the emerging use of new technologies to enhance PD opportunities.
Abstract: Teacher professional development (PD) has been in high demand during the last decade, and the design and dissemination of new PD models have been the impetus for discussion among educators around the world. Previously called teacher in-service training, the preferred label by scholars and practitioners is now teacher professional development. In this article, we consider the distinction between in-service training and “professional development, and go on to discuss the current literature on features of high-quality PD. We also provide examples of programs that illustrate these features and consider the emerging use of new technologies to enhance PD opportunities.

383 citations

Journal ArticleDOI
19 Mar 2015-Nature
TL;DR: Results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation, and identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains.
Abstract: Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.

383 citations


Authors

Showing all 27683 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Charles A. Dinarello1901058139668
Gad Getz189520247560
Gordon B. Mills1871273186451
Jasvinder A. Singh1762382223370
David Haussler172488224960
Donald G. Truhlar1651518157965
Charles M. Perou156573202951
David Cella1561258106402
Bruce D. Walker15577986020
Marco A. Marra153620184684
Thomas E. Starzl150162591704
Marc Humbert1491184100577
Rajesh Kumar1494439140830
Martin J. Blaser147820104104
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

97% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

97% related

Duke University
200.3K papers, 10.7M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202383
2022358
20213,831
20203,913
20193,632