scispace - formally typeset
Search or ask a question
Institution

University of Perugia

EducationPerugia, Umbria, Italy
About: University of Perugia is a education organization based out in Perugia, Umbria, Italy. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 13365 authors who have published 39516 publications receiving 1265601 citations. The organization is also known as: Universitá degli Studi di Perugia & Universita degli Studi di Perugia.


Papers
More filters
Journal ArticleDOI
21 Feb 2003-Science
TL;DR: Investigation of cage experiments with transgenic Anopheles stephensi indicates direct costs of the introduced transgene in at least three out of the four lines, as well as an apparent cost of the inbreeding involved in making transgenic homozygotes.
Abstract: Genetic modification of mosquitoes offers exciting possibilities for controlling malaria, but success will depend on how transformation affects the fitness of modified insects. The expression of an exogenous gene, the mutations caused by its insertion, and inbreeding while transformed lines are established can all lead to reductions in fitness. Factors influencing fitness were investigated in cage experiments with four lines of transgenic Anopheles stephensi, a vector species of human malaria. The results indicate direct costs of the introduced transgene in at least three out of the four lines, as well as an apparent cost of the inbreeding involved in making transgenic homozygotes.

209 citations

Journal ArticleDOI
TL;DR: Three major phagocytic populations in the mouse were tested in vitro for killing of Candida albicans by means of 51Cr release assay: early inflammatory peritoneal polymorphonuclear cells (PMN), unfractionated or adherent spleen cells and residentPeritoneal macrophages (PEC).
Abstract: Three major phagocytic populations in the mouse were tested in vitro for killing of Candida albicans by means of 51Cr release assay: early inflammatory peritoneal polymorphonuclear cells (PMN), unfractionated or adherent spleen cells and resident peritoneal macrophages (PEC). Considerable candidacidal activity was found in the early inflammatory neutrophil and adherent spleen cell populations. On the contrary, only limited activity was found to be associated with resident peritoneal macrophages. The phagocytic killing apparently involved multiple mechanisms.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the conditions for the formation of the colloidal dispersion as well as the preparation of the pellicles, films, and membranes are reported, and some properties of the dispersion and the membranes are discussed.

209 citations

Journal ArticleDOI
TL;DR: An experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells (DSSCs).
Abstract: We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells (DSSCs). We focus on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with cobalt electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox shuttle, while the organic D21L6 and D25L6 dyes, endowed with long alkoxy chains, show no significant change in the electron lifetime regardless of employed electrolyte and deliver a high photovoltaic efficiency of 6.5% with a cobalt electrolyte. Ab initio molecular dynamics simulations show the formation of a complex between the cobalt electrolyte and the surface-adsorbed ruthenium dye, which brings the [Co(bpy)(3)](3+) species into contact with the TiO(2) surface. This translates into a high probability of intercepting TiO(2)-injected electrons by the oxidized [Co(bpy)(3)](3+) species, lying close to the N719-sensitized TiO(2) surface. Investigation of the dye regeneration mechanism by the cobalt electrolyte in the Marcus theory framework led to substantially different reorganization energies for the high-spin (HS) and low-spin (LS) reaction pathways. Our calculated reorganization energies for the LS pathways are in excellent agreement with recent data for a series of cobalt complexes, lending support to the proposed regeneration pathway. Finally, we systematically investigate a series of Co(II)/Co(III) complexes to gauge the impact of ligand substitution and of metal coordination (tris-bidentate vs bis-tridentate) on the HS/LS energy difference and reorganization energies. Our results allow us to trace structure/property relations required for further development of cobalt electrolytes for DSSCs.

209 citations

Journal Article
01 Oct 1994-Oncogene
TL;DR: In vitro data indicate that the formation of the Shc-Grb2 complex is a crucial event in the transformation induced by overexpression of Shc and support the notion that Shc proteins can deliver activation signals to RAS.
Abstract: The mammalian SHC gene encodes three overlapping proteins which all contain a carboxy-terminal SH2 domain. Shc proteins are phosphorylated on tyrosine by a variety of receptor and cytoplasmic tyrosine kinases. Phosphorylated Shc proteins form a complex with the SH2-SH3 containing Grb2 protein which is implicated in the regulation of Ras, suggesting that Shc is involved in the intracellular transmission of growth signals from activated tyrosine kinases to Ras. Overexpression of Shc proteins in cultured fibroblasts induces a transformed phenotype. We now report that, in vitro, the high affinity binding of Grb2 to Shc proteins requires phosphorylation of Shc at Tyr317, which lies within the high affinity binding motif for the Grb2 SH2 domain, pYVNV, where Asn at the +2 position is crucial for complex formation. In vivo, Tyr317 is the major, but not the only, site for Shc phosphorylation, and is the sole Shc high affinity binding site for Grb2. Mutant Shc proteins with substitution of the Tyr317 by Phe lose the capacity to be highly phosphorylated on tyrosine upon growth factor receptor activation, to bind Grb2 and to induce neoplastic transformation. In contrast, Shc proteins that have an extensive aminoterminal deletion, but retain the Tyr317 site and the SH2 domain conserve the capacity to be phosphorylated, to bind to Grb2 and to induce cell transformation. These data indicate that the formation of the Shc-Grb2 complex is a crucial event in the transformation induced by overexpression of Shc and support the notion that Shc proteins can deliver activation signals to RAS.

209 citations


Authors

Showing all 13488 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Luigi Ferrucci1931601181199
Tobin J. Marks1591621111604
Johan Auwerx15865395779
Tony Pawson15042585196
Jack Hirsh14673486332
Alexander Belyaev1421895100796
R. L. McCarthy1411238115696
Harvey B Newman139159488308
Guido Tonelli138145897248
Elias Campo13576185160
Alberto Messineo134151196492
Franco Ligabue134140495389
Roberto Tenchini133139094541
R. Bartoldus132162497405
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

98% related

Sapienza University of Rome
155.4K papers, 4.3M citations

98% related

University of Bologna
115.1K papers, 3.4M citations

98% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022226
20212,487
20202,594
20192,362
20182,274