scispace - formally typeset
Search or ask a question

Showing papers in "BMC Systems Biology in 2007"


Journal ArticleDOI
TL;DR: Eigengene networks can be effective and biologically meaningful tools for studying the relationships between modules of a gene co-expression network and the proposed methods may reveal a higher order organization of the transcriptome.
Abstract: There is evidence that genes and their protein products are organized into functional modules according to cellular processes and pathways. Gene co-expression networks have been used to describe the relationships between gene transcripts. Ample literature exists on how to detect biologically meaningful modules in networks but there is a need for methods that allow one to study the relationships between modules. We show that network methods can also be used to describe the relationships between co-expression modules and present the following methodology. First, we describe several methods for detecting modules that are shared by two or more networks (referred to as consensus modules). We represent the gene expression profiles of each module by an eigengene. Second, we propose a method for constructing an eigengene network, where the edges are undirected but maintain information on the sign of the co-expression information. Third, we propose methods for differential eigengene network analysis that allow one to assess the preservation of network properties across different data sets. We illustrate the value of eigengene networks in studying the relationships between consensus modules in human and chimpanzee brains; the relationships between consensus modules in brain, muscle, liver, and adipose mouse tissues; and the relationships between male-female mouse consensus modules and clinical traits. In some applications, we find that module eigengenes can be organized into higher level clusters which we refer to as meta-modules. Eigengene networks can be effective and biologically meaningful tools for studying the relationships between modules of a gene co-expression network. The proposed methods may reveal a higher order organization of the transcriptome. R software tutorials, the data, and supplementary material can be found at the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/EigengeneNetwork .

737 citations


Journal ArticleDOI
TL;DR: CellNetAnalyzer is introduced, a toolbox for MATLAB facilitating, in an interactive and visual manner, a comprehensive structural analysis of metabolic, signalling and regulatory networks and provides a large toolbox with various, partially unique, functions and algorithms for functional network analysis.
Abstract: Mathematical modelling of cellular networks is an integral part of Systems Biology and requires appropriate software tools. An important class of methods in Systems Biology deals with structural or topological (parameter-free) analysis of cellular networks. So far, software tools providing such methods for both mass-flow (metabolic) as well as signal-flow (signalling and regulatory) networks are lacking. Herein we introduce CellNetAnalyzer, a toolbox for MATLAB facilitating, in an interactive and visual manner, a comprehensive structural analysis of metabolic, signalling and regulatory networks. The particular strengths of CellNetAnalyzer are methods for functional network analysis, i.e. for characterising functional states, for detecting functional dependencies, for identifying intervention strategies, or for giving qualitative predictions on the effects of perturbations. CellNetAnalyzer extends its predecessor FluxAnalyzer (originally developed for metabolic network and pathway analysis) by a new modelling framework for examining signal-flow networks. Two of the novel methods implemented in CellNetAnalyzer are discussed in more detail regarding algorithmic issues and applications: the computation and analysis (i) of shortest positive and shortest negative paths and circuits in interaction graphs and (ii) of minimal intervention sets in logical networks. CellNetAnalyzer provides a single suite to perform structural and qualitative analysis of both mass-flow- and signal-flow-based cellular networks in a user-friendly environment. It provides a large toolbox with various, partially unique, functions and algorithms for functional network analysis.CellNetAnalyzer is freely available for academic use.

529 citations


Journal ArticleDOI
TL;DR: Using protein-protein interaction, gene co-expression, and simulated data, it is shown that many networks comprised of module nodes are approximately factorizable and in these types of networks, simple relationships exist between seemingly disparate network concepts.
Abstract: Network concepts are increasingly used in biology and genetics. For example, the clustering coefficient has been used to understand network architecture; the connectivity (also known as degree) has been used to screen for cancer targets; and the topological overlap matrix has been used to define modules and to annotate genes. Dozens of potentially useful network concepts are known from graph theory. Here we study network concepts in special types of networks, which we refer to as approximately factorizable networks. In these networks, the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node 'conformity'. The node conformity turns out to be highly related to the connectivity. To provide a formalism for relating network concepts to each other, we define three types of network concepts: fundamental-, conformity-based-, and approximate conformity-based concepts. Fundamental concepts include the standard definitions of connectivity, density, centralization, heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based analogs of fundamental network concepts have several theoretical advantages. First, they allow one to derive simple relationships between seemingly disparate networks concepts. For example, we derive simple relationships between the clustering coefficient, the heterogeneity, the density, the centralization, and the topological overlap. The second advantage of approximate conformity-based network concepts is that they allow one to show that fundamental network concepts can be approximated by simple functions of the connectivity in module networks. Using protein-protein interaction, gene co-expression, and simulated data, we show that a) many networks comprised of module nodes are approximately factorizable and b) in these types of networks, simple relationships exist between seemingly disparate network concepts. Our results are implemented in freely available R software code, which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks

424 citations


Journal ArticleDOI
TL;DR: A heuristic for the statistical learning of a high-dimensional "causal" network that not only yield sensible first order approximations of the causal structure in high- dimensional genomic data but is also computationally highly efficient.
Abstract: Background The use of correlation networks is widespread in the analysis of gene expression and proteomics data, even though it is known that correlations not only confound direct and indirect associations but also provide no means to distinguish between cause and effect. For "causal" analysis typically the inference of a directed graphical model is required. However, this is rather difficult due to the curse of dimensionality.

391 citations


Journal ArticleDOI
TL;DR: A novel algorithmic framework is described that can accurately identify functional modules and carries the promise to be highly useful in analysis of high throughput data.
Abstract: With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.

321 citations


Journal ArticleDOI
TL;DR: A bottom up reconstruction of the metabolic network of Mycobacterium tuberculosis H37Rv, a functional in silico bacterium that contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, is completed.
Abstract: Background: Mycobacterium tuberculosis continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them.

278 citations


Journal ArticleDOI
TL;DR: The methodology presented herein facilitates identification and interpretation of high-throughput lipidomics data and has identified the parallel associations between the elevated triacylglycerol levels and the ceramides, as well as the putative activated ceramide-synthesis pathways.
Abstract: Lipids are an important and highly diverse class of molecules having structural, energy storage and signaling roles. Modern analytical technologies afford screening of many lipid molecular species in parallel. One of the biggest challenges of lipidomics is elucidation of important pathobiological phenomena from the integration of the large amounts of new data becoming available. We present computational and informatics approaches to study lipid molecular profiles in the context of known metabolic pathways and established pathophysiological responses, utilizing information obtained from modern analytical technologies. In order to facilitate identification of lipids, we compute the scaffold of theoretically possible lipids based on known lipid building blocks such as polar head groups and fatty acids. Each compound entry is linked to the available information on lipid pathways and contains the information that can be utilized for its automated identification from high-throughput UPLC/MS-based lipidomics experiments. The utility of our approach is demonstrated by its application to the lipidomic characterization of the fatty liver of the genetically obese insulin resistant ob/ob mouse model. We investigate the changes of correlation structure of the lipidome using multivariate analysis, as well as reconstruct the pathways for specific molecular species of interest using available lipidomic and gene expression data. The methodology presented herein facilitates identification and interpretation of high-throughput lipidomics data. In the context of the ob/ob mouse liver profiling, we have identified the parallel associations between the elevated triacylglycerol levels and the ceramides, as well as the putative activated ceramide-synthesis pathways.

259 citations


Journal ArticleDOI
TL;DR: The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than thenumber of genes, making it possible to naturally infer partial Granger causalities without any a priori information.
Abstract: Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems.

176 citations


Journal ArticleDOI
TL;DR: The method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm which enables the computation of reliable flux distributions even under extreme conditions of the network where metabolite concentration ranges may be drastically altered.
Abstract: Background In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions.

164 citations


Journal ArticleDOI
TL;DR: It is shown that short time series generated under transcription factor knock-out are optimal experiments in order to reveal the structure of gene regulatory networks and the benefit of using of prior knowledge within a Bayesian learning framework is limited to conditions of small gene expression data size.
Abstract: Cellular processes are controlled by gene-regulatory networks. Several computational methods are currently used to learn the structure of gene-regulatory networks from data. This study focusses on time series gene expression and gene knock-out data in order to identify the underlying network structure. We compare the performance of different network reconstruction methods using synthetic data generated from an ensemble of reference networks. Data requirements as well as optimal experiments for the reconstruction of gene-regulatory networks are investigated. Additionally, the impact of prior knowledge on network reconstruction as well as the effect of unobserved cellular processes is studied.

134 citations


Journal ArticleDOI
TL;DR: A new hypothesis for secretory diminution is suggested – milk production gradually declines because the secretory machinery is not transcriptionally replenished and a comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified.
Abstract: The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood.

Journal ArticleDOI
TL;DR: Two Arabidopsis mutants, mto1 and tt4, exhibited the overall loss of metabolic stability or the generation of a metabolic network of a backup pathway for the lost physiological functions (tt4).
Abstract: Metabolites are not only the catalytic products of enzymatic reactions but also the active regulators or the ultimate phenotype of metabolic homeostasis in highly complex cellular processes. The modes of regulation at the metabolome level can be revealed by metabolic networks. We investigated the metabolic network between wild-type and 2 mutant (methionine-over accumulation 1 [mto1] and transparent testa4 [tt4]) plants regarding the alteration of metabolite accumulation in Arabidopsis thaliana. In the GC-TOF/MS analysis, we acquired quantitative information regarding over 170 metabolites, which has been analyzed by a novel score (ZMC, z-score of metabolite correlation) describing a characteristic metabolite in terms of correlation. Although the 2 mutants revealed no apparent morphological abnormalities, the overall correlation values in mto1 were much lower than those of the wild-type and tt4 plants, indicating the loss of overall network stability due to the uncontrolled accumulation of methionine. In the tt4 mutant, a new correlation between malate and sinapate was observed although the levels of malate, sinapate, and sinapoylmalate remain unchanged, suggesting an adaptive reconfiguration of the network. Gene-expression correlations presumably responsible for these metabolic networks were determined using the metabolite correlations as clues. Two Arabidopsis mutants, mto1 and tt4, exhibited the following changes in entire metabolome networks: the overall loss of metabolic stability (mto1) or the generation of a metabolic network of a backup pathway for the lost physiological functions (tt4). The expansion of metabolite correlation to gene-expression correlation provides detailed insights into the systemic understanding of the plant cellular process regarding metabolome and transcriptome.

Journal ArticleDOI
TL;DR: An approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model is introduced, which can scale to multicellular models of complex pathways, and is therefore a useful tool for theAnalysis of complex biological systems.
Abstract: A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

Journal ArticleDOI
TL;DR: The current workaims at exploring CaMKII function in the context of the NMDA receptor complex at the excitatory glutamate synapse.
Abstract: Long-term modifications of synaptic strength, such aslong-term potentiation (LTP) or long-term depression(LTD) are thought to underlie some forms of learning andmemory. At the excitatory glutamate synapse, LTP isdependent on calcium influx through the N-methyl-D-aspartate (NMDA) receptor and subsequent activation ofcalcium/calmodulin-dependent protein kinase II (CaM-KII). The NMDA receptor, CaMKII, and its activator cal-modulin are all embedded in a complex hyperstructureconsisting of more than 180 molecules [1] that acts as asa "synaptic plasticity nanomachine". Our current workaims at exploring CaMKII function in the context of theNMDA receptor complex

Journal ArticleDOI
TL;DR: The project MIRIAM Resources allows an easy access to M IRIAM URIs and the associated information and is therefore crucial to foster a general use of MirIAM annotations in computational models of biological processes.
Abstract: Background The Minimal Information Requested In the Annotation of biochemical Models (MIRIAM) is a set of guidelines for the annotation and curation processes of computational models, in order to facilitate their exchange and reuse. An important part of the standard consists in the controlled annotation of model components, based on Uniform Resource Identifiers. In order to enable interoperability of this annotation, the community has to agree on a set of standard URIs, corresponding to recognised data types. MIRIAM Resources are being developed to support the use of those URIs.

Journal ArticleDOI
TL;DR: This paper investigates the effect of noises on switching in single and coupled genetic toggle switch systems in Escherichia coli and finds that stochastic fluctuations in degradation rates inside cells, i.e., intracellular noises, can induce synchronized switching.
Abstract: Bistability, the capacity to achieve two distinct stable steady states in response to a set of external stimuli, arises within biological systems ranging from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. On the other hand, more and more experimental evidence in the form of bimodal population distribution has indicated that noise plays a very important role in the switching of bistable systems. However, the physiological mechanism underling noise-induced switching behaviors remains to be fully understood. In this paper, we investigate the effect of noises on switching in single and coupled genetic toggle switch systems in Escherichia coli. In the case of the single toggle switch, we show that the multiplicative noises resulting from stochastic fluctuations in degradation rates can induce switching. In the case of the toggle switches interfaced by a quorum-sensing signaling pathway, we find that stochastic fluctuations in degradation rates inside cells, i.e., intracellular noises, can induce synchronized switching, whereas the extracellular noise additive to the common medium can not only entrain all the individual systems to switch in a synchronous manner but also enhance this ordering behavior efficiently, leading a robust collective rhythm in this interacting system. These insights on the effect of noises would be beneficial to understanding the basic mechanism of how living systems optimally facilitate to function under various fluctuated environments.

Journal ArticleDOI
TL;DR: Differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties indicate that the organization of cortical networks is not entirely determined by spatial constraints.
Abstract: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (05/00587-5); National Council for Scientific and Technological Development (308231/03-1); Engineering and Physical Sciences Research Council (EP/E002331/1)

Journal ArticleDOI
TL;DR: This paper provides an easy-verified sufficient condition for the stochastic synchronization of coupled genetic oscillators, based on the Lur'e system approach in control theory, and presents an efficient theoretical method for analyzing the synchronization of genetic oscillator networks.
Abstract: Background The study of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels Genetic networks are intrinsically noisy due to natural random intra- and inter-cellular fluctuations Therefore, it is important to study the effects of noise perturbation on the synchronous dynamics of genetic oscillators From the synthetic biology viewpoint, it is also important to implement biological systems that minimizing the negative influence of the perturbations

Journal ArticleDOI
TL;DR: Molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s, with the excitement that synthetic biology is generating.
Abstract: Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior.

Journal ArticleDOI
TL;DR: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies, which allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form.
Abstract: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.

Journal ArticleDOI
TL;DR: In addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information processing and engineering metaphors such as the ones described here could prove to be invaluable in understanding the design principles of biological systems.
Abstract: Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli.

Journal ArticleDOI
TL;DR: Following modk-prototypes clustering of the acetaminophen-exposed samples, informative genes from the cluster prototypes were identified that are descriptive of, and phenotypically anchored to, levels of necrosis of the centrilobular region of the rat liver.
Abstract: Commonly employed clustering methods for analysis of gene expression data do not directly incorporate phenotypic data about the samples. Furthermore, clustering of samples with known phenotypes is typically performed in an informal fashion. The inability of clustering algorithms to incorporate biological data in the grouping process can limit proper interpretation of the data and its underlying biology. We present a more formal approach, the modk-prototypes algorithm, for clustering biological samples based on simultaneously considering microarray gene expression data and classes of known phenotypic variables such as clinical chemistry evaluations and histopathologic observations. The strategy involves constructing an objective function with the sum of the squared Euclidean distances for numeric microarray and clinical chemistry data and simple matching for histopathology categorical values in order to measure dissimilarity of the samples. Separate weighting terms are used for microarray, clinical chemistry and histopathology measurements to control the influence of each data domain on the clustering of the samples. The dynamic validity index for numeric data was modified with a category utility measure for determining the number of clusters in the data sets. A cluster's prototype, formed from the mean of the values for numeric features and the mode of the categorical values of all the samples in the group, is representative of the phenotype of the cluster members. The approach is shown to work well with a simulated mixed data set and two real data examples containing numeric and categorical data types. One from a heart disease study and another from acetaminophen (an analgesic) exposure in rat liver that causes centrilobular necrosis. The modk-prototypes algorithm partitioned the simulated data into clusters with samples in their respective class group and the heart disease samples into two groups (sick and buff denoting samples having pain type representative of angina and non-angina respectively) with an accuracy of 79%. This is on par with, or better than, the assignment accuracy of the heart disease samples by several well-known and successful clustering algorithms. Following modk-prototypes clustering of the acetaminophen-exposed samples, informative genes from the cluster prototypes were identified that are descriptive of, and phenotypically anchored to, levels of necrosis of the centrilobular region of the rat liver. The biological processes cell growth and/or maintenance, amine metabolism, and stress response were shown to discern between no and moderate levels of acetaminophen-induced centrilobular necrosis. The use of well-known and traditional measurements directly in the clustering provides some guarantee that the resulting clusters will be meaningfully interpretable.

Journal ArticleDOI
TL;DR: The overlap in phenotypic attributes of the analogue with those of leukocyte in vitro confirm the considerable potential of the model for studying the key events that determine the behavioral outcome of individual leukocytes during rolling, activation, and adhesion.
Abstract: Background We present a multilevel, agent based, in silico model that represents the dynamics of rolling, activation, and adhesion of individual leukocytes in vitro. Object-oriented software components were designed, verified, plugged together, and then operated in ways that represent the molecular and cellular mechanisms believed responsible for leukocyte rolling and adhesion. The result is an in silico analogue of an experimental in vitro system. The experimentally measured, phenotypic attributes of the analogue were compared and contrasted to those of leukocytes in vitro from three different experimental conditions.

Journal ArticleDOI
TL;DR: The steady-state characteristic presented shows a relationship between the growth rate and the output of the sensor system PTS, and the glycolytic flux that is measured by this sensor is a good indicator to represent the nutritional status of the cell.
Abstract: Background Global control influences the regulation of many individual subsystems by superimposed regulator proteins. A prominent example is the control of carbohydrate uptake systems by the transcription factor Crp in Escherichia coli. A detailed understanding of the coordination of the control of individual transporters offers possibilities to explore the potential of microorganisms e.g. in biotechnology.

Journal ArticleDOI
TL;DR: A method for consistent inference of network structure is provided, incorporating prior knowledge about sparse connectivity, and is shown to perform qualitatively superior compared to the most well-known method.
Abstract: Background: Identifying large gene regulatory networks is an important task, while the acquisition of data through perturbation experiments (e.g., gene switches, RNAi, heterozygotes) is expensive. It is thus desirable to use an identification method that effectively incorporates available prior knowledge – such as sparse connectivity – and that allows to design experiments such that maximal information is gained from each one. Results: Our main contributions are twofold: a method for consistent inference of network structure is provided, incorporating prior knowledge about sparse connectivity. The algorithm is time efficient and robust to violations of model assumptions. Moreover, we show how to use it for optimal experimental design, reducing the number of required experiments substantially. We employ sparse linear models, and show how to perform full Bayesian inference for these. We not only estimate a single maximum likelihood network, but compute a posterior distribution over networks, using a novel variant of the expectation propagation method. The representation of uncertainty enables us to do effective experimental design in a standard statistical setting: experiments are selected such that the experiments are maximally informative. Conclusion: Few methods have addressed the design issue so far. Compared to the most wellknown one, our method is more transparent, and is shown to perform qualitatively superior. In the former, hard and unrealistic constraints have to be placed on the network structure for mere computational tractability, while such are not required in our method. We demonstrate reconstruction and optimal experimental design capabilities on tasks generated from realistic nonlinear network simulators. The methods described in the paper are available as a Matlab package at http://www.kyb.tuebingen.mpg.de/sparselinearmodel.

Journal ArticleDOI
TL;DR: The findings of functional enrichment support the view that network patterns constitute an important design principle in regulatory networks, however, the wildly used method of over-representation for detecting motifs is not suitable for identifying functionally enriched patterns.
Abstract: Background Localized network patterns are assumed to represent an optimal design principle in different biological networks. A widely used method for identifying functional components in biological networks is looking for network motifs – over-represented network patterns. A number of recent studies have undermined the claim that these over-represented patterns are indicative of optimal design principles and question whether localized network patterns are indeed of functional significance. This paper examines the functional significance of regulatory network patterns via their biological annotation and evolutionary conservation.

Journal ArticleDOI
TL;DR: It is found that network similarity indeed decreases with an increasing time difference between these networks during a day/night course and, counter intuitively, that proximity of metabolites in the correlation network is no indicator of proximity of molecules in the metabolic network.
Abstract: Background Metabolic correlation networks are derived from the covariance of metabolites in replicates of metabolomics experiments. They constitute an interesting intermediate between topology (i.e. the system's architecture defined by the set of reactions between metabolites) and dynamics (i.e. the metabolic concentrations observed as fluctuations around steady-state values in the metabolic network).

Journal ArticleDOI
TL;DR: YeastXtract software was developed for kinetic growth curve analysis of spotted agar cultures, providing objective, automated, quantitative, image analysis of agar cell culture arrays and fitting the resulting data to a logistic equation-based growth model yields robust, accurate growth rate information.
Abstract: Genome-wide mutant strain collections have increased demand for high throughput cellular phenotyping (HTCP). For example, investigators use HTCP to investigate interactions between gene deletion mutations and additional chemical or genetic perturbations by assessing differences in cell proliferation among the collection of 5000 S. cerevisiae gene deletion strains. Such studies have thus far been predominantly qualitative, using agar cell arrays to subjectively score growth differences. Quantitative systems level analysis of gene interactions would be enabled by more precise HTCP methods, such as kinetic analysis of cell proliferation in liquid culture by optical density. However, requirements for processing liquid cultures make them relatively cumbersome and low throughput compared to agar. To improve HTCP performance and advance capabilities for quantifying interactions, YeastXtract software was developed for automated analysis of cell array images. YeastXtract software was developed for kinetic growth curve analysis of spotted agar cultures. The accuracy and precision for image analysis of agar culture arrays was comparable to OD measurements of liquid cultures. Using YeastXtract, image intensity vs. biomass of spot cultures was linearly correlated over two orders of magnitude. Thus cell proliferation could be measured over about seven generations, including four to five generations of relatively constant exponential phase growth. Spot area normalization reduced the variation in measurements of total growth efficiency. A growth model, based on the logistic function, increased precision and accuracy of maximum specific rate measurements, compared to empirical methods. The logistic function model was also more robust against data sparseness, meaning that less data was required to obtain accurate, precise, quantitative growth phenotypes. Microbial cultures spotted onto agar media are widely used for genotype-phenotype analysis, however quantitative HTCP methods capable of measuring kinetic growth rates have not been available previously. YeastXtract provides objective, automated, quantitative, image analysis of agar cell culture arrays. Fitting the resulting data to a logistic equation-based growth model yields robust, accurate growth rate information. These methods allow the incorporation of imaging and automated image analysis of cell arrays, grown on solid agar media, into HTCP-driven experimental approaches, such as global, quantitative analysis of gene interaction networks.

Journal ArticleDOI
TL;DR: A method is proposed, called MetaViz, which enables to draw a genome-scale metabolic network and that also takes into account its structuration into pathways and it is believed that this provides a valuable tool to explore the pathway structure of metabolism.
Abstract: The tools that are available to draw and to manipulate the representations of metabolism are usually restricted to metabolic pathways. This limitation becomes problematic when studying processes that span several pathways. The various attempts that have been made to draw genome-scale metabolic networks are confronted with two shortcomings: 1- they do not use contextual information which leads to dense, hard to interpret drawings, 2- they impose to fit to very constrained standards, which implies, in particular, duplicating nodes making topological analysis considerably more difficult. We propose a method, called MetaViz, which enables to draw a genome-scale metabolic network and that also takes into account its structuration into pathways. This method consists in two steps: a clustering step which addresses the pathway overlapping problem and a drawing step which consists in drawing the clustered graph and each cluster. The method we propose is original and addresses new drawing issues arising from the no-duplication constraint. We do not propose a single drawing but rather several alternative ways of presenting metabolism depending on the pathway on which one wishes to focus. We believe that this provides a valuable tool to explore the pathway structure of metabolism.

Journal ArticleDOI
TL;DR: Scale-free topologies of PPI networks appear to be a simple consequence of the conservation of protein-binding domains under asymmetric duplication/divergence dynamics in the course of evolution, and are found to be robust to extensive shuffling of protein domains.
Abstract: Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI) networks by outweighing, in particular, all time-linear network growths modeled so far.