scispace - formally typeset
Search or ask a question

Showing papers in "Cold Spring Harbor Perspectives in Biology in 2018"


Journal ArticleDOI
TL;DR: This review summarizes and highlights clinical aspects of several of the most commonly encountered neurodegenerative diseases, including AD, frontotemporal dementia (FTD) and its variants, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and Huntington's Disease (HD).
Abstract: Neurodegenerative diseases are a common cause of morbidity and cognitive impairment in older adults. Most clinicians who care for the elderly are not trained to diagnose these conditions, perhaps other than typical Alzheimer's disease (AD). Each of these disorders has varied epidemiology, clinical symptomatology, laboratory and neuroimaging features, neuropathology, and management. Thus, it is important that clinicians be able to differentiate and diagnose these conditions accurately. This review summarizes and highlights clinical aspects of several of the most commonly encountered neurodegenerative diseases, including AD, frontotemporal dementia (FTD) and its variants, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and Huntington's disease (HD). For each condition, we provide a brief overview of the epidemiology, defining clinical symptoms and diagnostic criteria, relevant imaging and laboratory features, genetics, pathology, treatments, and differential diagnosis.

533 citations


Journal ArticleDOI
TL;DR: The actin cytoskeleton-a collection of actin filaments with their accessory and regulatory proteins-is the primary force-generating machinery in the cell, and can produce pushing (protrusive) forces through coordinated polymerization of multiple actin Filaments or pulling forces through sliding actinfilaments along bipolar filaments of myosin II.
Abstract: The actin cytoskeleton-a collection of actin filaments with their accessory and regulatory proteins-is the primary force-generating machinery in the cell. It can produce pushing (protrusive) forces through coordinated polymerization of multiple actin filaments or pulling (contractile) forces through sliding actin filaments along bipolar filaments of myosin II. Both force types are particularly important for whole-cell migration, but they also define and change the cell shape and mechanical properties of the cell surface, drive the intracellular motility and morphogenesis of membrane organelles, and allow cells to form adhesions with each other and with the extracellular matrix.

416 citations


Journal ArticleDOI
TL;DR: Blockade of IL-6 family cytokines has been shown to be beneficial in autoimmune diseases, but bacterial infections and metabolic side effects have been observed.
Abstract: The interleukin (IL)-6 family cytokines is a group of cytokines consisting of IL-6, IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine (CLC), and IL-27. They are grouped into one family because the receptor complex of each cytokine contains two (IL-6 and IL-11) or one molecule (all others cytokines) of the signaling receptor subunit gp130. IL-6 family cytokines have overlapping but also distinct biologic activities and are involved among others in the regulation of the hepatic acute phase reaction, in B-cell stimulation, in the regulation of the balance between regulatory and effector T cells, in metabolic regulation, and in many neural functions. Blockade of IL-6 family cytokines has been shown to be beneficial in autoimmune diseases, but bacterial infections and metabolic side effects have been observed. Recent advances in cytokine blockade might help to minimize such side effects during therapeutic blockade.

415 citations


Journal ArticleDOI
TL;DR: The current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis are examined.
Abstract: Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.

360 citations


Journal ArticleDOI
TL;DR: The mechanisms underlying the intestinal tight junction dysfunction, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions are discussed.
Abstract: Mucosal surfaces are lined by epithelial cells In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions Tight junction dysfunction has been linked to a variety of local and systemic diseases Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions

327 citations


Journal ArticleDOI
Ronald C. Wek1
TL;DR: The mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF1α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease are highlighted.
Abstract: A central mechanism regulating translation initiation in response to environmental stress involves phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α causes inhibition of global translation, which conserves energy and facilitates reprogramming of gene expression and signaling pathways that help to restore protein homeostasis. Coincident with repression of protein synthesis, many gene transcripts involved in the stress response are not affected or are even preferentially translated in response to increased eIF2α phosphorylation by mechanisms involving upstream open reading frames (uORFs). This review highlights the mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF2α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease.

282 citations


Journal ArticleDOI
TL;DR: This work discusses the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelia (epidermis).
Abstract: Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.

275 citations


Journal ArticleDOI
TL;DR: Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models and are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.
Abstract: Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models. Interferon (IFN)-α is approved for treatment of hairy cell leukemia, and interleukin (IL)-2 for the treatment of advanced melanoma and metastatic renal cancer. In addition, IL-12, IL-15, IL-21, and granulocyte macrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials. However, the cytokines as monotherapy have not fulfilled their early promise because cytokines administered parenterally do not achieve sufficient concentrations in the tumor, are often associated with severe toxicities, and induce humoral or cellular checkpoints. To circumvent these impediments, cytokines are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity (ADCC) of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.

267 citations


Journal ArticleDOI
TL;DR: How dynamic instability is central to the assembly of many microtubules-based structures and to the robust functioning of the microtubule cytoskeleton is reviewed.
Abstract: Microtubules act as "railways" for motor-driven intracellular transport, interact with accessory proteins to assemble into larger structures such as the mitotic spindle, and provide an organizational framework to the rest of the cell. Key to these functions is the fact that microtubules are "dynamic." As with actin, the polymer dynamics are driven by nucleotide hydrolysis and influenced by a host of specialized regulatory proteins, including microtubule-associated proteins. However, microtubule turnover involves a surprising behavior-termed dynamic instability-in which individual polymers switch stochastically between growth and depolymerization. Dynamic instability allows microtubules to explore intracellular space and remodel in response to intracellular and extracellular cues. Here, we review how such instability is central to the assembly of many microtubule-based structures and to the robust functioning of the microtubule cytoskeleton.

258 citations


Journal ArticleDOI
TL;DR: This review describes cardinal features of the three types of IFNs and focuses on the role of the IRF family members in the regulation of each IFN system.
Abstract: Interferons (IFNs) are a broad class of cytokines elicited on challenge to the host defense and are essential for mobilizing immune responses to pathogens. Divided into three classes, type I, type II, and type III, all IFNs share in common the ability to evoke antiviral activities initiated by the interaction with their cognate receptors. The nine-member IFN regulatory factor (IRF) family, first discovered in the context of transcriptional regulation of type I IFN genes following viral infection, are pivotal for the regulation of the IFN responses. In this review, we briefly describe cardinal features of the three types of IFNs and then focus on the role of the IRF family members in the regulation of each IFN system.

211 citations


Journal ArticleDOI
TL;DR: The roles of T GF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases are discussed.
Abstract: Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.

Journal ArticleDOI
TL;DR: This review of the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.
Abstract: The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.

Journal ArticleDOI
TL;DR: The major scanning or messenger RNA (mRNA) m7G cap-dependent mechanism is described, which is a highly coordinated and stepwise regulated process that requires the combined action of at least 12 distinct translation factors with initiator transfer RNA (tRNA), ribosomes, and mRNAs.
Abstract: This review summarizes our current understanding of the major pathway for the initiation phase of protein synthesis in eukaryotic cells, with a focus on recent advances. We describe the major scanning or messenger RNA (mRNA) m7G cap-dependent mechanism, which is a highly coordinated and stepwise regulated process that requires the combined action of at least 12 distinct translation factors with initiator transfer RNA (tRNA), ribosomes, and mRNAs. We limit our review to studies involving either mammalian or budding yeast cells and factors, as these represent the two best-studied experimental systems, and only include a reference to other organisms where particular insight has been gained. We close with a brief description of what we feel are some of the major unknowns in eukaryotic initiation.

Journal ArticleDOI
TL;DR: Replication of both the protocell and its encapsulated genetic material would have enabled natural selection to operate based on the differential fitness of competing cellular entities, ultimately giving rise to modern cellular life.
Abstract: The general notion of an "RNA world" is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA, and RNA molecules were the chief agents of catalytic function. Assuming that all of the components of RNA were available in some prebiotic locale, these components could have assembled into activated nucleotides that condensed to form RNA polymers, setting the stage for the chemical replication of polynucleotides through RNA-templated RNA polymerization. If a sufficient diversity of RNAs could be copied with reasonable rate and fidelity, then Darwinian evolution would begin with RNAs that facilitated their own reproduction enjoying a selective advantage. The concept of a "protocell" refers to a compartment where replication of the primitive genetic material took place and where primitive catalysts gave rise to products that accumulated locally for the benefit of the replicating cellular entity. Replication of both the protocell and its encapsulated genetic material would have enabled natural selection to operate based on the differential fitness of competing cellular entities, ultimately giving rise to modern cellular life.

Journal ArticleDOI
TL;DR: This review highlights how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation by summarized the reported findings of cell culture studies, animal models, and interactions with other signaling pathways.
Abstract: Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.

Journal ArticleDOI
TL;DR: Lines of recent evidence strongly suggest IL-6 blockade can provide broader therapeutic strategy for various diseases included in acute systemic and chronic inflammatory diseases.
Abstract: Interleukin 6 (IL-6) is a prototypical cytokine for maintaining homeostasis. When homeostasis is disrupted by infections or tissue injuries, IL-6 is produced immediately and contributes to host defense against such emergent stress through activation of acute-phase and immune responses. However, dysregulated excessive and persistent synthesis of IL-6 has a pathological effect on, respectively, acute systemic inflammatory response syndrome and chronic immune-mediated diseases. The IL-6 inhibitor, tocilizumab, a humanized anti-IL-6 receptor antibody, is currently being used for the treatment of rheumatoid arthritis, juvenile idiopathic arthritis, and Castleman disease. Lines of recent evidence strongly suggest IL-6 blockade can provide broader therapeutic strategy for various diseases included in acute systemic and chronic inflammatory diseases.

Journal ArticleDOI
TL;DR: The aim of this article is to show the link between ribosome structure, dynamics, and function.
Abstract: This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.

Journal ArticleDOI
TL;DR: Tumor-associated macrophages and TANs are both integrated in cancer-related inflammation and an ever better understanding of their functions can be useful to tailor the use of anticancer therapeutic approaches and patient follow-up.
Abstract: Chronic inflammation is a well-recognized tumor-enabling capability, which allows nascent tumors to escape immunosurveillance. A number of soluble and cellular inflammatory mediators take part in the various phases of cancer initiation and progression, giving rise to a fatal conspiracy, which is difficult to efficiently overcome. Tumor-associated macrophages (TAMs) are pivotal players of the tumor microenvironment and, because of their characteristic plasticity, can acquire a number of distinct phenotypes and contribute in different ways to the various phases of cancerogenesis. Tumor-associated neutrophils (TANs) are also emerging as important components of the tumor microenvironment, given their unexpected heterogeneity and plasticity. TAMs and TANs are both integrated in cancer-related inflammation and an ever better understanding of their functions can be useful to tailor the use of anticancer therapeutic approaches and patient follow-up.

Journal ArticleDOI
TL;DR: Naïve CD4 T cells, on activation, differentiate into distinct T helper (Th) subsets that produce lineage-specific cytokines, which play critical roles in orchestrating immune responses to a variety of infections and are involved in the pathogenesis of many inflammatory diseases including autoimmunity, allergy, and asthma.
Abstract: Naive CD4 T cells, on activation, differentiate into distinct T helper (Th) subsets that produce lineage-specific cytokines. By producing unique sets of cytokines, effector Th subsets play critical roles in orchestrating immune responses to a variety of infections and are involved in the pathogenesis of many inflammatory diseases including autoimmunity, allergy, and asthma. The differentiation of Th cells relies on the strength of T-cell receptor (TCR) signaling and signals triggered by polarizing cytokines that activate and/or up-regulate particular transcription factors. Several lineage-specific master transcription factors dictate Th cell fates and functions. Although these master regulators cross-regulate each other, their expression can be dynamic. Sometimes, they are even coexpressed, resulting in massive Th-cell heterogeneity and plasticity. Similar regulation mediated by these master regulators is also found in innate lymphoid cells (ILCs) that are innate counterparts of Th cells.

Journal ArticleDOI
TL;DR: How keratins serve multiple homeostatic and stress-triggered mechanical and nonmechanical functions, including maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis is reviewed.
Abstract: Keratins-types I and II-are the intermediate-filament-forming proteins expressed in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Here, we review how keratins serve multiple homeostatic and stress-triggered mechanical and nonmechanical functions, including maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications and keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility or altered tissue homeostasis. Furthermore, keratin mutation or misregulation represents risk factors or genetic modifiers for several additional acute and chronic diseases.

Journal ArticleDOI
TL;DR: It is seen that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Abstract: In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.

Journal ArticleDOI
TL;DR: In this review, the mechanisms of riboswitch-mediated translation control are summarized to highlight both their diversity and potential ancient origins.
Abstract: A growing collection of bacterial riboswitch classes is being discovered that sense central metabolites, coenzymes, and signaling molecules. Included among the various mechanisms of gene regulation exploited by these RNA regulatory elements are several that modulate messenger RNA (mRNA) translation. In this review, the mechanisms of riboswitch-mediated translation control are summarized to highlight both their diversity and potential ancient origins. These mechanisms include ligand-gated presentation or occlusion of ribosome-binding sites, control of alternative splicing of mRNAs, and the regulation of mRNA stability. Moreover, speculation on the potential for novel riboswitch discoveries is presented, including a discussion on the potential for the discovery of a greater diversity of mechanisms for translation control.

Journal ArticleDOI
TL;DR: It is advocated that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E- cadher in-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression.
Abstract: Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.

Journal ArticleDOI
TL;DR: This work considers the mechanisms responsible for applying force to cell-cell junctions and the mechanosensory pathways that detect those forces.
Abstract: Cell adhesion systems are defined by their ability to resist detachment force. Our understanding of the biology of cell-cell adhesions has recently been transformed by the realization that many of the forces that act on those adhesions are generated by the cells that they couple together; and that force at adhesive junctions can be sensed to regulate cell behavior. Here, we consider the mechanisms responsible for applying force to cell-cell junctions and the mechanosensory pathways that detect those forces. We focus on cadherins, as these are the best-studied examples to date, but it is likely that similar principles will apply to other molecular systems that can engage with force-generators within cells and physically couple those cells together.

Journal ArticleDOI
TL;DR: Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary e RF1/eRF3-guanosine triphosphate (GTP) complex.
Abstract: Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/eRF3-guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density-regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read-through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon.

Journal ArticleDOI
TL;DR: This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders, and confirms the importance of signaling by bone morphogenetic proteins in vascular function.
Abstract: It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.

Journal ArticleDOI
TL;DR: The actions of γc family cytokines are discussed, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Abstract: Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.

Journal ArticleDOI
TL;DR: This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity and highlights the need to understand more fully the role of these proteins in tumorigenesis.
Abstract: Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene transcriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity.

Journal ArticleDOI
TL;DR: In this article, the authors summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes and focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Abstract: TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.

Journal ArticleDOI
TL;DR: An evolutionary perspective is taken on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling.
Abstract: Cadherin-based adherens junctions (AJs) and desmosomes are crucial to couple intercellular adhesion to the actin or intermediate filament cytoskeletons, respectively. As such, these intercellular junctions are essential to provide not only integrity to epithelia and other tissues but also the mechanical machinery necessary to execute complex morphogenetic and homeostatic intercellular rearrangements. Moreover, these spatially defined junctions serve as signaling hubs that integrate mechanical and chemical pathways to coordinate tissue architecture with behavior. This review takes an evolutionary perspective on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling. We discuss known literature on cross-talk between the two junctions and, using the skin epidermis as an example, provide a model for how these two junctions function in concert to orchestrate tissue organization and function.