scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Clinical Microbiology in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors used high-density Roche 454 pyrosequencing to survey the distal gut microbiota for 39 individuals with CDI, 36 subjects with C. difficile-negative nosocomial diarrhea (CDN), and 40 healthy control subjects.
Abstract: Clostridium difficile infection (CDI) causes nearly half a million cases of diarrhea and colitis in the United States each year. Although the importance of the gut microbiota in C. difficile pathogenesis is well recognized, components of the human gut flora critical for colonization resistance are not known. Culture-independent high-density Roche 454 pyrosequencing was used to survey the distal gut microbiota for 39 individuals with CDI, 36 subjects with C. difficile-negative nosocomial diarrhea (CDN), and 40 healthy control subjects. A total of 526,071 partial 16S rRNA sequence reads of the V1 to V3 regions were aligned with 16S databases, identifying 3,531 bacterial phylotypes from 115 fecal samples. Genomic analysis revealed significant alterations of organism lineages in both the CDI and CDN groups, which were accompanied by marked decreases in microbial diversity and species richness driven primarily by a paucity of phylotypes within the Firmicutes phylum. Normally abundant gut commensal organisms, including the Ruminococcaceae and Lachnospiraceae families and butyrate-producing C2 to C4 anaerobic fermenters, were significantly depleted in the CDI and CDN groups. These data demonstrate associations between the depletion of Ruminococcaceae, Lachnospiraceae, and butyrogenic bacteria in the gut microbiota and nosocomial diarrhea, including C. difficile infection. Mechanistic studies focusing on the functional roles of these organisms in diarrheal diseases and resistance against C. difficile colonization are warranted.

418 citations


Journal ArticleDOI
TL;DR: The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.
Abstract: During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

344 citations


Journal ArticleDOI
TL;DR: An enteric TaqMan Array Card to detect 19 enteropathogens, including viruses (adenovirus, astrovirus, norovirus GII, rotavirus, and sapovirus), bacteria (Campylobacter jejuni/C. difficile, Salmonella, Vibrio cholerae, diarrheagenic Escherichia coli, and Entamoeba histolytica), and helminths is developed.
Abstract: The TaqMan Array Card (TAC) system is a 384-well singleplex real-time PCR format that has been used to detect multiple infection targets. Here we developed an enteric TaqMan Array Card to detect 19 enteropathogens, including viruses (adenovirus, astrovirus, norovirus GII, rotavirus, and sapovirus), bacteria (Campylobacter jejuni/C. coli, Clostridium difficile, Salmonella, Vibrio cholerae, diarrheagenic Escherichia coli strains including enteroaggregative E. coli [EAEC], enterotoxigenic E. coli [ETEC], enteropathogenic E. coli [EPEC], and Shiga-toxigenic E. coli [STEC]), Shigella/enteroinvasive E. coli (EIEC), protozoa (Cryptosporidium, Giardia lamblia, and Entamoeba histolytica), and helminths (Ascaris lumbricoides and Trichuris trichiura), as well as two extrinsic controls to monitor extraction and amplification efficiency (the bacteriophage MS2 and phocine herpesvirus). Primers and probes were newly designed or adapted from published sources and spotted onto microfluidic cards. Fecal samples were spiked with extrinsic controls, and DNA and RNA were extracted using the QiaAmp Stool DNA minikit and the QuickGene RNA Tissue kit, respectively, and then mixed with Ag-Path-ID One Step real-time reverse transcription-PCR (RT-PCR) reagents and loaded into cards. PCR efficiencies were between 90% and 105%, with linearities of 0.988 to 1. The limit of detection of the assays in the TAC was within a 10-fold difference from the cognate assays performed on plates. Precision testing demonstrated a coefficient of variation of below 5% within a run and 14% between runs. Accuracy was evaluated for 109 selected clinical specimens and revealed an average sensitivity and specificity of 85% and 77%, respectively, compared with conventional methods (including microscopy, culture, and immunoassay) and 98% and 96%, respectively, compared with our laboratory-developed PCR-Luminex assays. This TAC allows fast, accurate, and quantitative detection of a broad spectrum of enteropathogens and is well suited for surveillance or clinical purposes.

314 citations


Journal ArticleDOI
TL;DR: Both digital and real-time PCR provide accurate CMV load data over a wide linear dynamic range and digital PCR may provide an opportunity to reduce the quantitative variability currently seen using real- Time PCR, but methods need to be further optimized to match the sensitivity of real- time PCR.
Abstract: Quantitative real-time PCR (QRT-PCR) has been widely implemented for clinical viral load testing, but a lack of standardization and relatively poor precision have hindered its usefulness. Digital PCR offers highly precise, direct quantification without requiring a calibration curve. Performance characteristics of real-time PCR were compared to those of droplet digital PCR (ddPCR) for cytomegalovirus (CMV) load testing. Tenfold serial dilutions of the World Health Organization (WHO) and the National Institute of Standards and Technology (NIST) CMV quantitative standards were tested, together with the AcroMetrix CMV tc panel (Life Technologies, Carlsbad, CA) and 50 human plasma specimens. Each method was evaluated using all three standards for quantitative linearity, lower limit of detection (LOD), and accuracy. Quantitative correlation, mean viral load, and variability were compared. Real-time PCR showed somewhat higher sensitivity than ddPCR (LODs, 3 log(10) versus 4 log(10) copies/ml and IU/ml for NIST and WHO standards, respectively). Both methods showed a high degree of linearity and quantitative correlation for standards (R(2) ≥ 0.98 in each of 6 regression models) and clinical samples (R(2) = 0.93) across their detectable ranges. For higher concentrations, ddPCR showed less variability than QRT-PCR for the WHO standards and AcroMetrix standards (P < 0.05). QRT-PCR showed less variability and greater sensitivity than did ddPCR in clinical samples. Both digital and real-time PCR provide accurate CMV load data over a wide linear dynamic range. Digital PCR may provide an opportunity to reduce the quantitative variability currently seen using real-time PCR, but methods need to be further optimized to match the sensitivity of real-time PCR.

287 citations


Journal ArticleDOI
TL;DR: Wzi sequencing is a rapid and simple method for the determination of the K types of most K. pneumoniae clinical isolates and the prediction of K type once the wzi allele was known was 94%.
Abstract: Pathogens of the genus Klebsiella have been classified into distinct capsular (K) types for nearly a century. K typing of Klebsiella species still has important applications in epidemiology and clinical microbiology, but the serological method has strong practical limitations. Our objective was to evaluate the sequencing of wzi, a gene conserved in all capsular types of Klebsiella pneumoniae that codes for an outer membrane protein involved in capsule attachment to the cell surface, as a simple and rapid method for the prediction of K type. The sequencing of a 447-nucleotide region of wzi distinguished the K-type reference strains with only nine exceptions. A reference wzi sequence database was created by the inclusion of multiple strains representing K types associated with high virulence and multidrug resistance. A collection of 119 prospective clinical isolates of K. pneumoniae were then analyzed in parallel by wzi sequencing and classical K typing. Whereas K typing achieved typeability for 81% and discrimination for 94.4% of the isolates, these figures were 98.1% and 98.3%, respectively, for wzi sequencing. The prediction of K type once the wzi allele was known was 94%. wzi sequencing is a rapid and simple method for the determination of the K types of most K. pneumoniae clinical isolates.

252 citations


Journal ArticleDOI
TL;DR: Overall, echinocandin and triazole resistance rates were low; however, the fluconazole and echinOCandin coresistance among C. glabrata strains warrants continued close surveillance.
Abstract: The SENTRY Antimicrobial Surveillance Program monitors global susceptibility and resistance rates of newer and established antifungal agents. We report the echinocandin and triazole antifungal susceptibility patterns for 3,418 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 98 laboratories in 34 countries during 2010 and 2011. Yeasts not presumptively identified by CHROMagar, the trehalose test, or growth at 42°C and all molds were sequence identified using internal transcribed spacer (ITS) and 28S (yeasts) or ITS, translation elongation factor (TEF), and 28S (molds) genes. Susceptibility testing was performed against 7 antifungals (anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole, and voriconazole) using CLSI methods. Rates of resistance to all agents were determined using the new CLSI clinical breakpoints and epidemiological cutoff value criteria, as appropriate. Sequencing of fks hot spots was performed for echinocandin non-wild-type (WT) strains. Isolates included 3,107 from 21 Candida spp., 146 from 9 Aspergillus spp., 84 from Cryptococcus neoformans, 40 from 23 other mold species, and 41 from 9 other yeast species. Among Candida spp., resistance to the echinocandins was low (0.0 to 1.7%). Candida albicans and Candida glabrata that were resistant to anidulafungin, caspofungin, or micafungin were shown to have fks mutations. Resistance to fluconazole was low among the isolates of C. albicans (0.4%), Candida tropicalis (1.3%), and Candida parapsilosis (2.1%); however, 8.8% of C. glabrata isolates were resistant to fluconazole. Among echinocandin-resistant C. glabrata isolates from 2011, 38% were fluconazole resistant. Voriconazole was active against all Candida spp. except C. glabrata (10.5% non-WT), whereas posaconazole showed decreased activity against C. albicans (4.4%) and Candida krusei (15.2% non-WT). All agents except for the echinocandins were active against C. neoformans, and the triazoles were active against other yeasts (MIC90, 2 μg/ml). The echinocandins and triazoles were active against Aspergillus spp. (MIC90/minimum effective concentration [MEC90] range, 0.015 to 2 μg/ml), but the echinocandins were not active against other molds (MEC90 range, 4 to >16 μg/ml). Overall, echinocandin and triazole resistance rates were low; however, the fluconazole and echinocandin coresistance among C. glabrata strains warrants continued close surveillance.

230 citations


Journal ArticleDOI
TL;DR: It is concluded that rifampin resistance that is difficult to detect by the gold standard, phenotypic DST, is clinically and epidemiologically highly relevant and further DST using a different system would be fully justified.
Abstract: The rapid diagnosis of rifampin resistance is hampered by a reported insufficient specificity of molecular techniques for detection of rpoB mutations. Our objective for this study was to document the prevalence and prognostic value of rpoB mutations with unclear phenotypic resistance. The study design entailed sequencing directly from sputum of first failure or relapse patients without phenotypic selection and comparison of the standard retreatment regimen outcome, according to the mutation present. We found that among all rpoB mutations, the best-documented “disputed” rifampin resistance mutations (511Pro, 516Tyr, 526Asn, 526Leu, 533Pro, and 572Phe) made up 13.1% and 10.6% of all mutations in strains from Bangladesh and Kinshasa, respectively. Except for the 511Pro and 526Asn mutations, most of these strains with disputed mutations tested rifampin resistant in routine Lowenstein-Jensen medium proportion method drug susceptibility testing (DST; 78.7%), but significantly less than those with common, undisputed mutations (96.3%). With 63% of patients experiencing failure or relapse in both groups, there was no difference in outcome of first-line retreatment between patients carrying a strain with disputed versus common mutations. We conclude that rifampin resistance that is difficult to detect by the gold standard, phenotypic DST, is clinically and epidemiologically highly relevant. Sensitivity rather than specificity is imperfect with any rifampin DST method. Even at a low prevalence of rifampin resistance, a rifampin-resistant result issued by a competent laboratory may not warrant confirmation, although the absence of a necessity for confirmation needs to be confirmed for molecular results among new cases. However, a result of rifampin susceptibility should be questioned when suspicion is very high, and further DST using a different system (i.e., genotypic after phenotypic testing) would be fully justified.

223 citations


Journal ArticleDOI
TL;DR: The present study shows that the FilmArray is a rapid identification method with high performance in direct identification of bacteria and yeasts from positive blood culture bottles, as demonstrated by the testing and retesting of five bottles in the same day and a longitudinal follow-up of five other blood cultures up to 4 weeks.
Abstract: The FilmArray platform (FA; BioFire, Salt Lake City, UT) is a closed diagnostic system allowing high-order multiplex PCR analysis with automated readout of results directly from positive blood cultures in 1 h. In the present study, we evaluated the clinical performance of the FilmArray blood culture identification (BCID) panel, which includes 19 bacteria, five yeasts, and three antibiotic resistance genes. In total, 206 blood culture bottles were included in the study. The FilmArray could identify microorganisms in 153/167 (91.6%) samples with monomicrobial growth. Thirteen of the 167 (7.8%) microorganisms were not covered by the FilmArray BCID panel. In 6/167 (3.6%) samples, the FilmArray detected an additional microorganism compared to blood culture. When polymicrobial growth was analyzed, the FilmArray could detect all target microorganisms in 17/24 (71%) samples. Twelve blood culture bottles that yielded a positive signal but showed no growth were also negative by FilmArray. In 3/206 (1.5%) bottles, the FilmArray results were invalid. The results of the FilmArray were reproducible, as demonstrated by the testing and retesting of five bottles in the same day and a longitudinal follow-up of five other blood cultures up to 4 weeks. The present study shows that the FilmArray is a rapid identification method with high performance in direct identification of bacteria and yeasts from positive blood culture bottles.

223 citations


Journal ArticleDOI
TL;DR: The results indicate that this short-turnaround-time test can be used to accurately test patients and to possibly do so at the site of care, thus potentially improving chlamydia and gonorrhea control efforts.
Abstract: Tests for Chlamydia trachomatis and Neisseria gonorrhoeae, which can provide results rapidly to guide therapeutic decision-making, offer patient care advantages over laboratory-based tests that require several days to provide results. We compared results from the Cepheid GeneXpert CT/NG (Xpert) assay to results from two currently approved nucleic acid amplification assays in 1,722 female and 1,387 male volunteers. Results for chlamydia in females demonstrated sensitivities for endocervical, vaginal, and urine samples of 97.4%, 98.7%, and 97.6%, respectively, and for urine samples from males, a sensitivity of 97.5%, with all specificity estimates being ≥ 99.4%. Results for gonorrhea in females demonstrated sensitivities for endocervical, vaginal, and urine samples of 100.0%, 100.0%, and 95.6%, respectively, and for urine samples from males, a sensitivity of 98.0%, with all estimates of specificity being ≥ 99.8%. These results indicate that this short-turnaround-time test can be used to accurately test patients and to possibly do so at the site of care, thus potentially improving chlamydia and gonorrhea control efforts.

214 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper examined the distribution of Cryptosporidium species and Enterocytozoon bieneusi genotypes in AIDS patients receiving antiretroviral therapy.
Abstract: Molecular diagnostic tools have been used increasingly in the characterization of the transmission of cryptosporidiosis and microsporidiosis in developing countries. However, few studies have examined the distribution of Cryptosporidium species and Enterocytozoon bieneusi genotypes in AIDS patients receiving antiretroviral therapy. In the present study, 683 HIV-positive patients in the National Free Antiretroviral Therapy Program in China and 683 matched HIV-negative controls were enrolled. Cryptosporidium species and subtypes and Enterocytozoon bieneusi genotypes were detected and differentiated by PCR and DNA sequencing. The infection rates were 1.5% and 0.15% for Cryptosporidium and 5.7% and 4.2% for E. bieneusi in HIV-positive and HIV-negative participants, respectively. The majority (8/11) of Cryptosporidium cases were infections by zoonotic species, including Cryptosporidium meleagridis (5), Cryptosporidium parvum (2), and Cryptosporidium suis (1). Prevalent E. bieneusi genotypes detected, including EbpC (39), D (12), and type IV (7), were also potentially zoonotic. The common occurrence of EbpC was a feature of E. bieneusi transmission not seen in other areas. Contact with animals was a risk factor for both cryptosporidiosis and microsporidiosis. The results suggest that zoonotic transmission was significant in the epidemiology of both diseases in rural AIDS patients in China.

205 citations


Journal ArticleDOI
TL;DR: The sensitivity of each assay fluctuated by viral target, with the greatest discrepancies noted for adenovirus and influenza virus B detection.
Abstract: There are several U.S. FDA-cleared molecular respiratory virus panels available today, each with advantages and disadvantages. This study compares four multiplex panels, the BioFire Diagnostics FilmArray RP (respiratory panel), the GenMark Dx eSensor RVP (respiratory viral panel), the Luminex xTAG RVPv1, and the Luminex xTAG RVP fast. Three hundred specimens (200 retrospective and 100 consecutive) were tested using all four platforms to determine performance characteristics. The overall sensitivity and specificity, respectively, and 95% confidence interval (CI; in parentheses) for each panel were as follows: FilmArray RP, 84.5% (79.2, 88.6) and 100% (96.2, 100); eSensor RVP, 98.3% (95.5, 99.5) and 99.2% (95.4, 100); xTAG RVPv1, 92.7% (88.5, 95.4) and 99.8% (96.0, 100); and xTAG RVP fast, 84.4% (78.5, 88.9) and 99.9% (96.1, 100). The sensitivity of each assay fluctuated by viral target, with the greatest discrepancies noted for adenovirus and influenza virus B detection. Hands-on time and time to result were recorded and ease of use was assessed to generate a complete profile of each assay.

Journal ArticleDOI
TL;DR: An alternate extraction procedure is developed and a highly stringent database comprising 294 individual isolates representing 76 genera and 152 species is constructed, believed to be the most comprehensive clinically relevant mold database developed to date.
Abstract: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a powerful tool for the rapid and highly accurate identification of clinical pathogens but has not been utilized extensively in clinical mycology due to challenges in developing an effective protein extraction method and the limited databases available. Here, we developed an alternate extraction procedure and constructed a highly stringent database comprising 294 individual isolates representing 76 genera and 152 species. To our knowledge, this is the most comprehensive clinically relevant mold database developed to date. When challenged with 421 blinded clinical isolates from our institution, by use of the BioTyper software, accurate species-level (score of ≥ 2.0) and genus-level (score of ≥ 1.7) identifications were obtained for 370 (88.9%) and 18 (4.3%) isolates, respectively. No isolates were misidentified. Of the 33 isolates (7.8%) for which there was no identification (score of <1.7), 25 were basidiomycetes not associated with clinical disease and 8 were Penicillium species that were not represented in the database. Our library clearly outperformed the manufacturer's database that was obtained with the instrument, which identified only 3 (0.7%) and 26 (6.2%) isolates at species and genus levels, respectively. Identification was not affected by different culture conditions. Implementation into our routine workflow has revolutionized our mycology laboratory efficiency, with improved accuracy and decreased time for mold identification, eliminating reliance on traditional phenotypic features.

Journal ArticleDOI
TL;DR: Comparing routine urine cultures of planktonic bacteria with cultures of shed urothelial cells concentrated in centrifuged urinary sediments revealed large numbers of bacteria undetected by routine cultures, which explains how routine cultures might fail to detect them.
Abstract: Chronic lower urinary tract symptoms (LUTS), such as urgency and incontinence, are common, especially among the elderly, but their etiology is often obscure. Recent studies of acute urinary tract infections implicated invasion by Escherichia coli into the cytoplasm of urothelial cells, with persistence of long-term bacterial reservoirs, but the role of infection in chronic LUTS is unknown. We conducted a large prospective study with eligible patients with LUTS and controls over a 3-year period, comparing routine urine cultures of planktonic bacteria with cultures of shed urothelial cells concentrated in centrifuged urinary sediments. This comparison revealed large numbers of bacteria undetected by routine cultures. Next, we typed the bacterial species cultured from patient and control sediments under both aerobic and anaerobic conditions, and we found that the two groups had complex but significantly distinct profiles of bacteria associated with their shed bladder epithelial cells. Strikingly, E. coli, the organism most responsible for acute urinary tract infections, was not the only or even the main offending pathogen in this more-chronic condition. Antibiotic protection assays with shed patient cells and in vitro infection studies using patient-derived strains in cell culture suggested that LUTS-associated bacteria are within or extremely closely associated with shed epithelial cells, which explains how routine cultures might fail to detect them. These data have strong implications for the need to rethink our common diagnoses and treatments of chronic urinary tract symptoms.

Journal ArticleDOI
TL;DR: It is shown that candidemia is a significant source of morbidity in Europe, causing a substantial burden of disease and mortality.
Abstract: Candidemia has become an important bloodstream infection that is frequently associated with high rates of mortality and morbidity, and its growing incidence is related to complex medical and surgical procedures. We conducted a multicenter study in five tertiary care teaching hospitals in Italy and Spain and evaluated the epidemiology, species distribution, antifungal susceptibilities, and outcomes of candidemia episodes. In the period of 2008 to 2010, 995 episodes of candidemia were identified in these hospitals. The overall incidence of candidemia was 1.55 cases per 1,000 admissions and remained stable during the 3-year analysis. Candida albicans was the leading agent of infection (58.4%), followed by Candida parapsilosis complex (19.5%), Candida tropicalis (9.3%), and Candida glabrata (8.3%). The majority of the candidemia episodes were found in the internal medicine department (49.6%), followed by the surgical ward, the intensive care unit (ICU), and the hemato-oncology ward. Out of 955 patients who were eligible for evaluation, 381 (39.9%) died within 30 days from the onset of candidemia. Important differences in the 30-day mortality rates were noted between institutions: the lowest mortality rate was in the Barcelona hospital, and the highest rate was in the Udine hospital (33.6% versus 51%, respectively; P = 0.0005). Overall, 5.1% of the 955 isolates tested were resistant or susceptible dose dependent (SDD) to fluconazole, with minor differences between the hospitals in Italy and Spain (5.7% versus 3.5%, respectively; P = 0.2). Higher MICs for caspofungin were found, especially with C. parapsilosis complex (MIC90, 1 μg/ml). Amphotericin B had the lowest MICs. This report shows that candidemia is a significant source of morbidity in Europe, causing a substantial burden of disease and mortality.

Journal ArticleDOI
TL;DR: Clinical laboratories are urged to be aware of the variable results that can occur when using different methods for colistin MIC testing and, in particular, to use caution with the Etest.
Abstract: In vitro evaluation of colistin susceptibility is fraught with complications, due in part to the inherent cationic properties of colistin. In addition, no reference method has been defined against which to compare the results of colistin susceptibility testing. This study systematically evaluated the available methods for colistin MIC testing in two phases. In phase I, colistin MICs were determined in 107 fresh clinical isolates of multidrug-resistant (MDR) Gram-negative bacilli (GNB) by broth microdilution with polysorbate 80 (BMD-T), broth macrodilution (TDS), and the Etest. In phase II, 50 of these isolates, 10 of which were colistin resistant, were tested in parallel using BMD-T, TDS, agar dilution, broth microdilution without polysorbate 80 (BMD), and the TREK Gram-negative extra MIC format (GNXF) Sensititre. The Etest was also performed on these 50 isolates using Mueller-Hinton agar (MHA) from three different manufacturers. Colistin MIC results obtained from the five methods were compared to the MIC results obtained using BMD-T, the method that enables the highest nominal concentration of colistin in the test medium. Essential agreement ranged from 34% (BMD) to 83% (TDS), whereas categorical agreement was >90% for all methods except for BMD, which was 88%. Very major errors (VMEs) (i.e., false susceptibility) for the Etest were found in 47 to 53% of the resistant isolates, depending on the manufacturer of the MHA that was used. In contrast, VMEs were found for 10% (n = 1) of the resistant isolates by BMD and 0% of the isolates by the TDS, agar dilution, and Sensititre methods. Based on these data, we urge clinical laboratories to be aware of the variable results that can occur when using different methods for colistin MIC testing and, in particular, to use caution with the Etest.

Journal ArticleDOI
TL;DR: Comparing the level of resistance detected on Löwenstein-Jensen medium with resistance detected by the Bactec MGIT 960 automated DST (MGIT-DST) system for various rpoB mutants suggests that the gold standard for rifampin resistance should be reconsidered, in order to address the present confusion caused by discrepancies between phenotypic and genotypic results.
Abstract: WHO-endorsed phenotypic drug susceptibility testing (DST) methods for Mycobacterium tuberculosis are assumed to be the gold standard for identifying rifampin (RMP) resistance. However, previous results indicated that low-level, yet probably clinically relevant, RMP resistance linked to specific rpoB mutations is easily missed by some growth-based methods. We aimed to compare the level of resistance detected on Lowenstein-Jensen (LJ) medium with resistance detected by the Bactec MGIT 960 automated DST (MGIT-DST) system for various rpoB mutants. Full agreement between LJ and MGIT-DST was observed for mutations located at codons 513 (Lys or Pro) and 531 (Leu, Trp), which were always resistant by both methods. For mutations 511Pro, 516Tyr, 533Pro, 572Phe, and several 526 mutations, LJ and MGIT results were highly discordant, with MGIT-DST failing to give a result or declaring the strains susceptible. Our data show that phenotypic RMP resistance testing of M. tuberculosis is not a binary phenomenon for some rpoB mutations and that the widely used automated MGIT 960 system is prone to miss some RMP resistance-conferring mutations, while careful DST on LJ missed hardly any. Given the association of these mutations with poor clinical outcome, our findings suggest that the gold standard for rifampin resistance should be reconsidered, in order to address the present confusion caused by discrepancies between phenotypic and genotypic results. The impacts of these mutations will depend on the frequency of their occurrence, which may vary from one setting to another.

Journal ArticleDOI
TL;DR: Quick, simple, and reliable methods are needed for laboratory detection of carbapenemases that are widely disseminated among Gram-negative bacteria, in order to improve the detection and surveillance of these clinically relevant bacteria in an epidemiological context.
Abstract: Quick, simple, and reliable methods are needed for laboratory detection of carbapenemases that are widely disseminated among Gram-negative bacteria, in order to improve the detection and surveillance of these clinically relevant bacteria in an epidemiological context ([1][1], [2][2]). Recently, a

Journal ArticleDOI
TL;DR: In this paper, the authors examined household water and shower aerosols of patients with NTM pulmonary disease and found no evidence for acquisition of infection from household water for this species, despite a predominance of disease due to M. abscessus.
Abstract: It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species.

Journal ArticleDOI
TL;DR: A high genetic diversity, mutations in important neutralizing epitopes paired with suboptimal vaccination, various levels of clinical responses of poultry and wild birds to virulent strains, strains with new cleavage sites, and other genetic modifications found in these genotypes tend to undermine and complicate NDV management in Africa.
Abstract: Despite rampant Newcastle disease virus (NDV) outbreaks in Africa for decades, the information about the genetic characteristics of the virulent strains circulating in West and Central Africa is still scarce. In this study, 96 complete NDV fusion gene sequences were obtained from poultry sampled in Cameroon, Central African Republic, Cote d'Ivoire, and Nigeria between 2006 and 2011. Based on rational criteria recently proposed for the classification of NDV strains into classes, genotypes, and subgenotypes, we revisited the classification of virulent strains, in particular those from West and Central Africa, leading to their grouping into genotype XIV and newly defined genotypes XVII and XVIII, each with two subgenotypes. Phylogenetic analyses revealed that several (sub)genotypes are found in almost every country. In Cameroon, most strains were related to vaccine strains, but a single genotype XVII strain was also found. Only three highly similar genotype XVII strains were detected in Central African Republic. Subgenotypes XVIIa, XVIIIa, and XVIIIb cocirculated in Cote d'Ivoire, while subgenotypes XIVa, XIVb, XVIIa, XVIIb, and XVIIIb were found in Nigeria. While these genotypes are so far geographically restricted, local and international trade of domestic and exotic birds may lead to their spread beyond West and Central Africa. A high genetic diversity, mutations in important neutralizing epitopes paired with suboptimal vaccination, various levels of clinical responses of poultry and wild birds to virulent strains, strains with new cleavage sites, and other genetic modifications found in these genotypes tend to undermine and complicate NDV management in Africa.

Journal ArticleDOI
TL;DR: This minireview explores the potential value of innovative methods for antimicrobial susceptibility testing of microorganisms that could provide valuable alternatives to existing methodologies in the very near future.
Abstract: Antimicrobial resistance has emerged as one of the most-significant health care problems of the new millennium, and the clinical microbiology laboratory plays a central role in optimizing the therapeutic management of patients with infection. This minireview explores the potential value of innovative methods for antimicrobial susceptibility testing of microorganisms that could provide valuable alternatives to existing methodologies in the very near future.

Journal ArticleDOI
TL;DR: The RPAs seem suitable for the implementation of syndromic panels onto microfluidic platforms, and showed comparable sensitivities to real-time RCR assays in these extracts.
Abstract: Syndromic panels for infectious disease have been suggested to be of value in point-of-care diagnostics for developing countries and for biodefense. To test the performance of isothermal recombinase polymerase amplification (RPA) assays, we developed a panel of 10 RPAs for biothreat agents. The panel included RPAs for Francisella tularensis, Yersinia pestis, Bacillus anthracis, variola virus, and reverse transcriptase RPA (RT-RPA) assays for Rift Valley fever virus, Ebola virus, Sudan virus, and Marburg virus. Their analytical sensitivities ranged from 16 to 21 molecules detected (probit analysis) for the majority of RPA and RT-RPA assays. A magnetic bead-based total nucleic acid extraction method was combined with the RPAs and tested using inactivated whole organisms spiked into plasma. The RPA showed comparable sensitivities to real-time RCR assays in these extracts. The run times of the assays at 42°C ranged from 6 to 10 min, and they showed no cross-detection of any of the target genomes of the panel nor of the human genome. The RPAs therefore seem suitable for the implementation of syndromic panels onto microfluidic platforms.

Journal ArticleDOI
TL;DR: PCR of prosthesis sonication samples is more sensitive than tissue culture for the microbiologic diagnosis of prosthetic hip and knee infection and provides same-day PJI diagnosis with definition of microbiology.
Abstract: We previously showed that culture of samples obtained by prosthesis vortexing and sonication was more sensitive than tissue culture for prosthetic joint infection (PJI) diagnosis. Despite improved sensitivity, culture-negative cases remained; furthermore, culture has a long turnaround time. We designed a genus-/group-specific rapid PCR assay panel targeting PJI bacteria and applied it to samples obtained by vortexing and sonicating explanted hip and knee prostheses, and we compared the results to those with sonicate fluid and periprosthetic tissue culture obtained at revision or resection arthroplasty. We studied 434 subjects with knee (n = 272) or hip (n = 162) prostheses; using a standardized definition, 144 had PJI. Sensitivities of tissue culture, of sonicate fluid culture, and of PCR were 70.1, 72.9, and 77.1%, respectively. Specificities were 97.9, 98.3, and 97.9%, respectively. Sonicate fluid PCR was more sensitive than tissue culture (P = 0.04). PCR of prosthesis sonication samples is more sensitive than tissue culture for the microbiologic diagnosis of prosthetic hip and knee infection and provides same-day PJI diagnosis with definition of microbiology. The high assay specificity suggests that typical PJI bacteria may not cause aseptic implant failure.

Journal ArticleDOI
TL;DR: The Bruker MALDI Biotyper system using the direct transfer-formic acid sample preparation method was shown to be a highly reliable tool for the identification of Gram-positive cocci.
Abstract: This study compared three sample preparation methods (direct transfer, the direct transfer-formic acid method with on-target formic acid treatment, and ethanol-formic acid extraction) for the identification of Gram-positive cocci with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A total of 156 Gram-positive cocci representing the clinically most important genera, Aerococcus, Enterococcus, Staphylococcus, and Streptococcus, as well as more rare genera, such as Gemella and Granulicatella, were analyzed using a Bruker MALDI Biotyper. The rate of correct genus-level identifications was approximately 99% for all three sample preparation methods. The species identification rate was significantly higher for the direct transfer-formic acid method and ethanol-formic acid extraction (both 77.6%) than for direct transfer (64.1%). Using direct transfer-formic acid compared to direct transfer, the total time to result was increased by 22.6%, 16.4%, and 8.5% analyzing 12, 48, and 96 samples per run, respectively. In a subsequent prospective study, 1,619 clinical isolates of Gram-positive cocci were analyzed under routine conditions by MALDI-TOF MS, using the direct transfer-formic acid preparation, and by conventional biochemical methods. For 95.6% of the isolates, a congruence between conventional and MALDI-TOF MS identification was observed. Two major limitations were found using MALDI-TOF MS: the differentiation of members of the Streptococcus mitis group and the identification of Streptococcus dysgalactiae. The Bruker MALDI Biotyper system using the direct transfer-formic acid sample preparation method was shown to be a highly reliable tool for the identification of Gram-positive cocci. We here suggest a practical algorithm for the clinical laboratory combining MALDI-TOF MS with phenotypic and molecular methods.

Journal ArticleDOI
TL;DR: Clinical and radiological findings were indistinguishable between the M. abscessus and M. massiliense groups, and both groups showed a high level of resistance to all antimicrobials, except for clarithromycin, kanamycin, and amikacin.
Abstract: In recent years, many novel nontuberculous mycobacterial species have been discovered through genetic analysis. Mycobacterium massiliense and M. bolletii have recently been identified as species separate from M. abscessus. However, little is known regarding their clinical and microbiological differences in Japan. We performed a molecular identification of stored M. abscessus clinical isolates for further identification. We compared clinical characteristics, radiological findings, microbiological findings, and treatment outcomes among patients with M. abscessus and M. massiliense lung diseases. An analysis of 102 previous isolates of M. abscessus identified 72 (71%) M. abscessus, 27 (26%) M. massiliense, and 3 (3%) M. bolletii isolates. Clinical and radiological findings were indistinguishable between the M. abscessus and M. massiliense groups. Forty-two (58%) patients with M. abscessus and 20 (74%) patients with M. massiliense infections received antimicrobial treatment. Both the M. abscessus and M. massiliense groups showed a high level of resistance to all antimicrobials, except for clarithromycin, kanamycin, and amikacin. However, resistance to clarithromycin was more frequently observed in the M. abscessus than in the M. massiliense group (16% and 4%, respectively; P = 0.145). Moreover, the level of resistance to imipenem was significantly lower in M. abscessus isolates than in M. massiliense isolates (19% and 48%, respectively; P = 0.007). The proportions of radiological improvement, sputum smear conversion to negativity, and negative culture conversion during the follow-up period were higher in patients with M. massiliense infections than in those with M. abscessus infections. Patients with M. massiliense infections responded more favorably to antimicrobial therapy than those with M. abscessus infections.

Journal ArticleDOI
TL;DR: A 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) enables the public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens.
Abstract: Acute diarrheal disease (ADD) can be caused by a range of pathogens, including bacteria, viruses, and parasites. Conventional diagnostic methods, such as culture, microscopy, biochemical assays, and enzyme-linked immunosorbent assays (ELISA), are laborious and time-consuming and lack sensitivity. Combined, the array of tests performed on a single specimen can increase the turnaround time (TAT) significantly. We validated a 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) to simultaneously screen directly in fecal specimens for diarrhea-causing pathogens, including bacteria (Campylobacter jejuni, Salmonella spp., Shigella spp., enterotoxigenic Escherichia coli [ETEC], Shiga toxin-producing E. coli [STEC], E. coli O157:H7, Vibrio cholerae, Yersinia enterocolitica, and toxigenic Clostridium difficile), parasites (Giardia lamblia, Cryptosporidium spp., and Entamoeba histolytica), and viruses (norovirus GI and GII, adenovirus 40/41, and rotavirus A). Performance characteristics of GPP ASRs were determined using 48 reference isolates and 254 clinical specimens. Stool specimens from individuals with diarrhea were tested for pathogens using conventional and molecular methods. Using the predictive methods as standards, the sensitivities of the GPP ASRs were 100% for adenovirus 40/41, norovirus, rotavirus A, Vibrio cholerae, Yersinia enterocolitica, Entamoeba histolytica, Cryptosporidium spp., and E. coli O157:H7; 95% for Giardia lamblia; 94% for ETEC and STEC; 93% for Shigella spp.; 92% for Salmonella spp.; 91% for C. difficile A/B toxins; and 90% for Campylobacter jejuni. The overall comparative performance of the GPP ASRs with conventional methods in clinical samples was 94.5% (range, 90% to 97%), with 99% (99.0% to 99.9%) specificity. Implementation of the GPP ASRs enables our public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens.

Journal ArticleDOI
TL;DR: The higher pooled sensitivity (compared to culture) and high specificity of BinaxNOW-SP suggest it would be a useful addition to the diagnostic workup for community-acquired pneumonia.
Abstract: Standard culture methods for diagnosis of Streptococcus pneumoniae pneumonia take at least 24 h. The BinaxNOW urine-based test for S. pneumoniae (BinaxNOW-SP) takes only 15 min to conduct, potentially enabling earlier diagnosis and targeted treatment. This study was conducted to assess whether the use of BinaxNOW-SP at the time of hospital admission would provide adequate sensitivity and specificity for diagnosis of community-acquired pneumonia (CAP) in adult patients. We searched PubMed, EMBASE/OVID, Cochrane Collaboration, Centre for Reviews and Dissemination, INAHTA, and CADTH for diagnostic or etiologic studies of hospitalized predominately adult patients with clinically defined CAP that reported the diagnostic performance of BinaxNOW-SP versus cultures. Two authors independently extracted study details and diagnostic two-by-two tables. We found that 27 studies met our inclusion criteria, and three different reference standards were used between them. A bivariate meta-analysis of 12 studies using a composite of culture tests as the reference standard estimated the sensitivity of BinaxNOW-SP as 68.5% (95% credibility interval [CrI], 62.6% to 74.2%) and specificity as 84.2% (95% CrI, 77.5% to 89.3%). A meta-analysis of all 27 studies, adjusting for the imperfect and variable nature of the reference standard, gave a higher sensitivity of 74.0% (CrI, 66.6% to 82·3%) and specificity of 97.2% (CrI, 92.7% to 99.8%). The analysis showed substantial heterogeneity across studies, which did not decrease with adjustment for covariates. We concluded that the higher pooled sensitivity (compared to culture) and high specificity of BinaxNOW-SP suggest it would be a useful addition to the diagnostic workup for community-acquired pneumonia. More research is needed regarding the impact of BinaxNOW-SP on clinical practice.

Journal ArticleDOI
TL;DR: Doern et al. as mentioned in this paper pointed out that positive blood cultures are rare for patients with angioinvasive fungal infections, making this diagnostic strategy of little value, and pointed out the importance of using antifungal agents, such as the echinocandins, during periods of neutropenia or graft-versus-host disease.
Abstract: Invasive fungal infections are a significant cause of morbidity and mortality in patients who receive immunosuppressive therapy, such as solid organ and hematopoietic stem cell transplant (HSCT) recipients. Many of the fungi associated with these infections are angioinvasive and are best diagnosed by visualizing the organism in or culturing the organism from deep tissue. However, obtaining such tissue often requires an invasive procedure. Many HSCT recipients are thrombocytopenic, making such procedure too risky because of potential bleeding complications. Additionally, positive blood cultures are rare for patients with angioinvasive fungal infections, making this diagnostic strategy of little value. Undiagnosed fungal infections in these patient populations are a significant cause of mortality. Prophylactic use of antifungal agents, such as the echinocandins, during periods of neutropenia or graft-versus-host disease may prevent some fungal infections but increase the risk for others. Detection of fungal antigens in body fluids, including cryptococcus capsular polysaccharide, histoplasma antigen, galactomannan, and β-d-glucan, is viewed as being clinically useful for at least the presumptive diagnosis of invasive fungal infections. β-d-Glucan is an attractive antigen in that it is found in a broad range of fungal agents, including the commonly encountered agents Candida spp., Aspergillus spp., and Pneumocystis jirovecii. Cross-reactions with certain hemodialysis filters, beta-lactam antimicrobials, and immunoglobulins, which raise concerns about false-positive tests, have also been described. As a result, the use of this testing must be closely monitored. In this point-counterpoint, we have asked Elitza Theel, who directs the Infectious Disease Serology Laboratory at the Mayo Clinic, to address why she believes that this test has value in the diagnosis of invasive fungal infections. We have asked Christopher Doern, Director of Clinical Microbiology at Children's Medical Center of Dallas, why he questions the clinical value of β-d-glucan testing.

Journal ArticleDOI
TL;DR: The described duplex real-time PCR can be used to detect DNA of B. dendrobatidis and B. salamandrivorans with highly reproducible and reliable results.
Abstract: Chytridiomycosis is a lethal fungal disease contributing to declines and extinctions of amphibian species worldwide. The currently used molecular screening tests for chytridiomycosis fail to detect the recently described species Batrachochytrium salamandrivorans. In this study, we present a duplex real-time PCR that allows the simultaneous detection of B. salamandrivorans and Batrachochytrium dendrobatidis. With B. dendrobatidis- and B. salamandrivorans-specific primers and probes, detection of the two pathogens in amphibian samples is possible, with a detection limit of 0.1 genomic equivalent of zoospores of both pathogens per PCR. The developed real-time PCR shows high degrees of specificity and sensitivity, high linear correlations (r2 > 0.995), and high amplification efficiencies (>94%) for B. dendrobatidis and B. salamandrivorans. In conclusion, the described duplex real-time PCR can be used to detect DNA of B. dendrobatidis and B. salamandrivorans with highly reproducible and reliable results.

Journal ArticleDOI
TL;DR: The data suggest that the retail beef samples were contaminated by a human source, possibly during processing of the meat, and may present a source of MRSA for consumers and others who handle raw meat.
Abstract: There is increasing interest in the presence of Staphylococcus aureus, specifically methicillin-resistant S. aureus (MRSA), on retail meat products. In this study, staphylococci were isolated from retail pork and retail beef in Georgia, and MRSA from the products was compared to human MRSA from the same geographic area using broth microdilution antimicrobial susceptibility testing, multilocus sequence typing (MLST), spa typing, SCCmec typing, and pulsed-field gel electrophoresis (PFGE). S. aureus was isolated from 45% (45/100) of pork products and 63% (63/100) of beef products; mecA was detected in S. aureus from both pork (3/100; 3%) and beef (4/100; 4%). Fifty percent (50/100) of human S. aureus also contained mecA. Multidrug resistance was detected among MRSA from all sources. All MRSA (n = 57) was SCCmec type IV, and nine different spa types were present among the isolates (t002, t008, t012, t024, t179, t337, t548, t681, and t1062). Four sequence types (ST5, ST8, ST9, and ST30) were detected using MLST; the majority of MRSA isolates belonged to ST8, followed by ST5. One retail beef MRSA isolate belonged to ST8, while the remaining three were ST5. In retail pork MRSA, ST5, ST9, and ST30 were observed. The majority of human MRSA isolates belonged to ST8. Thirty-seven MRSA isolates, one of which was a retail beef MRSA isolate, were pvl+. Using PFGE, MLST, and spa typing, three retail beef MRSA isolates were found to be identical in PFGE pattern, ST, and spa type to two human clonal MRSA isolates (USA100 and USA300). One additional retail beef MRSA isolate had a PFGE pattern similar to that of a human MRSA isolate, whereas none of the retail pork MRSA isolates had PFGE patterns similar to those of human MRSA isolates. These data suggest that the retail beef samples were contaminated by a human source, possibly during processing of the meat, and may present a source of MRSA for consumers and others who handle raw meat.

Journal ArticleDOI
TL;DR: In this article, a case of prosthetic valve endocarditis and one case of bloodstream infection caused by Mycobacterium chimaera (M.chimaera) was reported.
Abstract: Prosthetic valve endocarditis (PVE) due to fast-growing nontuberculous mycobacteria (NTM) has been reported anecdotally. Reports of PVE with slowly growing NTM, however, are lacking. We present here one case of PVE and one case of bloodstream infection caused by Mycobacterium chimaera. Randomly amplified polymorphic DNA (RAPD)-PCR indicated a relatedness of the two M. chimaera strains. Both patients had heart surgery 2 years apart from each other. A nosocomial link was not detected.