scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Vascular Research in 2021"


Journal ArticleDOI
TL;DR: Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes and interendothelial junctions, as well as caveolae and calcium signaling domains as discussed by the authors.
Abstract: Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.

15 citations


Journal ArticleDOI
TL;DR: In this paper, the antidiabetic drug metformin (MET) was used to prevent abdominal aortic aneurysm (AAA) formation in male Sprague Dawley rats.
Abstract: Background and objective Epidemiological evidence suggests that the antidiabetic drug metformin (MET) can also inhibit abdominal aortic aneurysm (AAA) formation. However, the underlying protective mechanism remains unknown. It has been reported that phosphorylated AMP-activated protein kinase (AMPK) levels are significantly lower in AAA tissues than control aortic tissues. AMPK activation can inhibit the downstream signaling molecule called mechanistic target of rapamycin (mTOR), which has also been reported be upregulated in thoracic aneurysms. Thus, blocking mTOR signaling could attenuate AAA progression. MET is a known agonist of AMPK. Therefore, in this study, we investigated if MET could inhibit formation of AAA by activating the AMPK/mTOR signaling pathway. Materials and methods The AAA animal model was induced by intraluminal porcine pancreatic elastase (PPE) perfusion in male Sprague Dawley rats. The rats were treated with MET or compound C (C.C), which is an AMPK inhibitor. AAA formation was monitored by serial ultrasound. Aortas were collected 4 weeks after surgery and subjected to immunohistochemistry, Western blot, and transmission electron microscopy analyses. Results MET treatment dramatically inhibited the formation of AAA 4 weeks after PPE perfusion. MET reduced the aortic diameter, downregulated both macrophage infiltration and matrix metalloproteinase expression, decreased neovascularization, and preserved the contractile phenotype of the aortic vascular smooth muscle cells. Furthermore, we detected an increase in autophagy after MET treatment. All of these effects were reversed by the AMPK inhibitor C.C. Conclusion This study demonstrated that MET activates AMPK and suppresses AAA formation. Our study provides a novel mechanism for MET and suggests that MET could be potentially used as a therapeutic candidate for preventing AAA.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) on en-dothelial dysfunction under hyperglycemic conditions was explored.
Abstract: Aim To explore the protective effects and related mech-anisms of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) on en-dothelial dysfunction under hyperglycemic conditions. Methods Cultured human umbilical vein endothelial cells (HUVECs) were treated with normal glucose (glucose concentration of 5.5 mmol/L), high glucose (glucose concentration of 33 mmol/L), and high glucose plus 1,25(OH)2D3, respectively. Cell viability and apoptosis, intracellular reactive oxygen species (ROS) and nitric oxide (NO) contents, antioxidant enzyme activities, proinflammatory cytokine mRNA levels, and expression levels of proteins involved were measured. Results High glucose decreased HUVEC viability, promoted ROS production and apoptosis, and reduced NO generation, which was associated with decreased activities of antioxidant enzymes and increased levels of proinflam-matory cytokines. 1,25(OH)2D3 treatment enhanced HUVEC viability, attenuated ROS generation and apoptosis, and -increased NO production, which was accompanied by -enhanced antioxidant enzyme activities and reduced -proinflammatory factors. Mechanically, 1,25(OH)2D3 promoted nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in a vitamin D receptor (VDR)-dependent manner, and Nrf2 siRNA abolished the antioxidative and -anti-inflammatory effects of 1,25(OH)2D3. Conclusions 1,25(OH)2D3 attenuates high-glucose-induced endothelial oxidative injury through upregulation of the Nrf2 antioxidant pathway in a VDR-dependent manner.

10 citations


Journal ArticleDOI
TL;DR: The VESsel GENeration (VESGEN) analysis software as discussed by the authors was used for the analysis of 2D vascular trees, networks, and tree-network composites.
Abstract: The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.

10 citations


Journal ArticleDOI
TL;DR: In this article, the PI3K/Akt/mTOR/S6 kinase pathway involvement in leptin-induced VEGF A synthesis was examined in a chick chorioallantoic membrane (CAM) with human recombinant leptin and specific inhibitors of the proposed signaling molecules (rapamycin and wortmannin).
Abstract: Introduction The present study aimed to realize human recombinant leptin 's ability to synthesize VEGF A while inducing neovascularization through PI3K/Akt/mTOR/S6 kinase involved signaling pathway. Methods To examine the PI3K/Akt/mTOR/S6 kinase pathway involvement in leptin-induced VEGF A synthesis, the chick chorioallantoic membrane (CAM) was incubated with human recombinant leptin and specific inhibitors of the proposed signaling molecules (rapamycin and wortmannin). We analyzed the role of specified signaling molecules in human recombinant leptin-induced physiological angiogenesis via VEGF A synthesis in detail with the support of various methodologies. Results Human recombinant leptin's ability to synthesize VEGF A is diminished significantly in the presence of inhibitors. This observation supported the role of PI3K/Akt/mTOR/S6 kinase signaling molecules in human recombinant leptin-mediated VEGF A synthesis while inducing angiogenesis in CAM. Conclusion Synthesis of VEGF A, followed by the growth of new blood vessels, by human recombinant leptin via the activation of the PI3K/Akt/mTOR/S6 kinase signaling pathway reflects mechanistic therapeutic application of human recombinant leptin. The data also signify the role of mTOR and S6 kinase molecules in angiogenesis under a physiological environment.

8 citations


Journal ArticleDOI
TL;DR: In this article, the authors characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP 8) promoter.
Abstract: Introduction Studies in Cx40-GCaMP2 mice, which express calcium biosensor GCaMP2 in the endothelium under connexin 40 promoter, have identified the unique properties of endothelial calcium signals. However, Cx40-GCaMP2 mouse is associated with a narrow dynamic range and lack of signal in the venous endothelium. Recent studies have proposed many GCaMPs (GCaMP5/6/7/8) with improved properties although their performance in endothelium-specific calcium studies is not known. Methods We characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP8) promoter. Calcium signals through endothelial IP3 receptors and TRP vanilloid 4 (TRPV4) ion channels were recorded in mesenteric arteries (MAs) and veins from Cdh5-GCaMP8 and Cx40-GCaMP2 mice. Results Cdh5-GCaMP8 mice showed lower baseline fluorescence intensity, higher dynamic range, and higher amplitudes of individual calcium signals than Cx40-GCaMP2 mice. Importantly, Cdh5-GCaMP8 mice enabled the first recordings of discrete calcium signals in the intact venous endothelium and revealed striking differences in IP3 receptor and TRPV4 channel calcium signals between MAs and mesenteric veins. Conclusion Our findings suggest that Cdh5-GCaMP8 mice represent significant improvements in dynamic range, sensitivity for low-intensity signals, and the ability to record calcium signals in venous endothelium.

8 citations


Journal ArticleDOI
TL;DR: The role of TMEM16A regulates PASMCs proliferation in high pulmonary blood flow-induced PAH, and the p38MAPK/ERK signaling pathway is probably involved.
Abstract: Objective Pulmonary arterial hypertension (PAH) is a complex disease of the small pulmonary arteries that is mainly characterized by vascular remodeling. It has been demonstrated that excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) plays a pivotal role in vascular remodeling during PAH. The present study was undertaken to explore the role of TMEM16A in regulating PASMCs proliferation in high pulmonary blood flow-induced PAH. Methods Aortocaval shunt surgery was undertaken to establish an animal model. Pulmonary artery pressure and pulmonary vascular structure remodeling (PVSR) were tested. Immunohistochemical staining and Western blot were performed to investigate the expression of TMEM16A. The proliferation of PASMCs was tested by the MTT assay. After treating PASMCs with TMEM16A-siRNA, the expression of proliferating cell nuclear antigen (PCNA), phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK), and phosphorylated extracellular signal-regulated kinase (p-ERK) signaling in PASMCs were tested. Results PAH and PVSR developed 11 weeks postoperation. Elevated expression of TMEM16A accompanied by high expression of PCNA in pulmonary arteries of the shunt group was observed. The increased proliferation of PASMCs and increased expression of TMEM16A and PCNA, along with activated p-p38MAPK and p-ERK signaling in PASMCs of the shunt group, were all attenuated by siRNA-specific TMEM16A knockdown. Conclusion TMEM16A regulates PASMCs proliferation in high pulmonary blood flow-induced PAH, and the p38MAPK/ERK signaling pathway is probably involved.

5 citations


Journal ArticleDOI
TL;DR: A method for isolating neonatal retinal endothelial cells that optimizes cell viability and purity is established and is compatible with next-generation sequencing applications.
Abstract: The neonatal mouse retinal vascularization model has been widely used in the vascular biology field to investigate mechanisms of angiogenesis and arterial-venous fate specification during blood vessel formation and maturation. Recent advances in next-generation sequencing can further elucidate mechanisms of blood vessel formation and remodeling in this, as well as other, vascular development models. However, an optimized method for isolating retinal endothelial cells that limits tissue digestion-induced cell damage is required for next-generation sequencing applications. In this study, we established a method for isolating neonatal retinal endothelial cells that optimizes cell viability and purity. The CD31+/CD45- endothelial cell population was fluorescence-activated cell sorting (FACS)-isolated from digested postnatal retinas, found to be highly enriched for endothelial cell gene expression, and exhibited no change in viability for 60 min post-FACS. Thus, this method for retinal endothelial cell isolation is compatible with next-generation sequencing applications. Combining this isolation method with next-generation sequencing will enable further delineation of mechanisms underlying vascular development and maturation.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of a diet intervention and pyridoxamine (PM) supplementation on hepatic microcirculatory and metabolic dysfunction in nonalcoholic fatty liver disease (NAFLD) was examined.
Abstract: Introduction This study aims to examine the effect of a diet intervention and pyridoxamine (PM) supplementation on hepatic microcirculatory and metabolic dysfunction in nonalcoholic fatty liver disease (NAFLD) Methods NAFLD in Wistar rats was induced with a high-fat diet for 20 weeks (NAFLD 20 weeks), and control animals were fed with a standard diet The NAFLD diet intervention group received the control diet between weeks 12 and 20 (NAFLD 12 weeks), while the NAFLD 12 weeks + PM group also received PM Fasting blood glucose (FBG) levels, body weight (BW), visceral adipose tissue (VAT), and hepatic microvascular blood flow (HMBF) were evaluated at the end of the protocol Results The NAFLD group exhibited a significant increase in BW and VAT, which was prevented by the diet intervention, irrespective of PM treatment The FBG was elevated in the NAFLD group, and caloric restriction improved this parameter, although additional improvement was achieved by PM The NAFLD group displayed a 31% decrease in HMBF, which was partially prevented by caloric restriction and completely prevented when PM was added HMBF was negatively correlated to BW, FBG, and VAT content Conclusion PM supplementation in association with lifestyle modifications could be an effective intervention for metabolic and hepatic vascular complications

4 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the specific contribution of pericyte-expressed R-Ras to the development of the retinal vasculature and showed that the normal retinal vascular development is dependent on R-ras expression in pericytes, and the absence of it leads to unattenuated angiogenesis and significantly weakens the blood-retinal barrier.
Abstract: PURPOSE The retinal vasculature is heavily invested by pericytes. Small GTPase R-Ras is highly expressed in endothelial cells and pericytes, suggesting importance of this Ras homolog for the regulation of the blood vessel wall. We investigated the specific contribution of pericyte-expressed R-Ras to the development of the retinal vasculature. METHODS The effect of R-Ras deficiency in pericytes was analyzed in pericyte-targeted conditional Rras knockout mice at birth and during the capillary plexus formation in the neonatal retina. RESULTS The offspring of these mice frequently exhibited unilateral microphthalmia. Analyses of the developing retinal vasculature in the eyes without microphthalmia revealed excessive endothelial cell proliferation, sprouting, and branching of the capillary plexus in these animals. These vessels were structurally defective with diminished pericyte coverage and basement membrane formation. Furthermore, these vessels showed reduced VE-cadherin staining and significantly elevated plasma leakage indicating the breakdown of the blood-retinal barrier. This defect was associated with considerable macrophage infiltration in the retina. CONCLUSIONS The normal retinal vascular development is dependent on R-Ras expression in pericytes, and the absence of it leads to unattenuated angiogenesis and significantly weakens the blood-retinal barrier. Our findings underscore the importance of R-Ras for pericyte function during the normal eye development.

4 citations


Journal ArticleDOI
TL;DR: In this paper, a review examines metabolic syndrome and its influences on microvessel density (MVD), as well as sex differences relating to the components of MetS and cardiovascular risk profiles.
Abstract: Metabolic syndrome (MetS) is a complex pathological state consisting of metabolic risk factors such as hypertension, insulin resistance, and obesity. The interconnectivity of cellular pathways within various biological systems suggests that each individual component of MetS may share common pathological sources. Additionally, MetS is closely associated with vasculopathy, including a reduction in microvessel density (MVD) (rarefaction) and elevated risk for various cardiovascular diseases. Microvascular impairments may contribute to perfusion-demand mismatch, where local metabolic needs are insufficiently met due to the lack of nutrient and oxygen supply, thus creating pathological positive-feedback loops and furthering the progression of disease. Sexual dimorphism is evident in these underlying cellular mechanisms, which places males and females at different levels of risk for cardiovascular disease and acute ischemic events. Estrogen exhibits protective effects on the endothelium of pre-menopausal women, while androgens may be antagonistic to cardiovascular health. This review examines MetS and its influences on MVD, as well as sex differences relating to the components of MetS and cardiovascular risk profiles. Finally, translational relevance and interventions are discussed in the context of these sex-based differences.

Journal ArticleDOI
TL;DR: In this article, the effect of anti-HPA-1a antibodies on EC function using two EC lines from different vascular beds, HMVEC of dermal origin and hCMEC/D3 of cerebral origin.
Abstract: Intracranial hemorrhage (ICH) associated with fetal/neonatal alloimmune thrombocytopenia (FNAIT) is attributed mainly to endothelial damage caused by binding of maternal anti-HPA-1a antibodies to the αvβ3 integrin on endothelial cells (ECs). We examined the effect of anti-HPA-1a antibodies on EC function using 2 EC lines from different vascular beds, HMVEC of dermal origin and hCMEC/D3 of cerebral origin. Anti-HPA-1a sera significantly increased apoptosis in both HMVEC and hCMEC/D3 cells and permeability in hCMEC/D3 cells only. This increase in both apoptosis and permeability was significantly inhibited by a monoclonal anti-β3 antibody (SZ21) binding to the HPA-1a epitope. Our results indicate that (1) maternal anti-HPA-1a antibodies impair EC function by increasing apoptosis and permeability and (2) ECs from different vascular beds vary in their susceptibility to pathological effects elicited by maternal anti-HPA-1a antibodies on EC permeability. Examination of maternal anti-HPA-1a antibodies for their effect on EC permeability may predict potential ICH associated with FNAIT.

Journal ArticleDOI
TL;DR: In this paper, the authors used computational fluid dynamics to assess hemodynamic changes in an actively rupturing abdominal aortic aneurysm (AAA) over a 9-day period.
Abstract: Computational fluid dynamics were used to assess hemodynamic changes in an actively rupturing abdominal aortic aneurysm (AAA) over a 9-day period. Active migration of contrast from the lumen into the thickest region of intraluminal thrombus (ILT) was demonstrated until it ultimately breached the adventitial layer. Four days after symptom onset, there was a discrete disruption of adventitial calcium with bleb formation at the site of future rupture. Rupture occurred in a region of low wall shear stress and was associated with a marked increase in AAA diameter from 6.6 to 8.4 cm. The cross-sectional area of the flow lumen increased across all time points from 6.28 to 12.08 cm2. The increase in luminal area preceded the increase in AAA diameter and was characterized by an overall deceleration in recirculation flow velocity with a coinciding increase in flow velocity penetrating the ILT. We show that there are significant hemodynamic and structural changes in the AAA flow lumen in advance of any appreciable increase in aortic diameter or rupture. The significant increase in AAA diameter with rupture suggests that AAA may actually rupture at smaller sizes than those measured on day of rupture. These findings have implications for algorithms the predict AAA rupture risk.

Journal ArticleDOI
TL;DR: In this article, the role of miR-22-3p in hypertension was investigated in the thoracic aortic vascular tissues of spontaneously hypertensive rats, and the authors found that the miR22 -3p level was significantly decreased in aorta smooth muscle cells (ASMCs).
Abstract: Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.

Journal ArticleDOI
TL;DR: In this article, the effect of transglutaminase inhibitor, cystamine, on transamidase activity in liver and lung homogenates was investigated in Wistar rats, which were exposed to chronic hypoxia and treated with vehicle, Cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil, or the combination for 2 weeks.
Abstract: Introduction Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. Methods Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. Results Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. Discussion/conclusions Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.

Journal ArticleDOI
TL;DR: In this article, a method for characterizing the mechanical heterogeneity of human CAs using generalized anisotropic inverse mechanics, which uses biaxial stretching experiments and inverse analyses to determine the local Kelvin moduli and principal alignments within the tissue.
Abstract: Accurately assessing the complex tissue mechanics of cerebral aneurysms (CAs) is critical for elucidating how CAs grow and whether that growth will lead to rupture. The factors that have been implicated in CA progression - blood flow dynamics, immune infiltration, and extracellular matrix remodeling - all occur heterogeneously throughout the CA. Thus, it stands to reason that the mechanical properties of CAs are also spatially heterogeneous. Here, we present a new method for characterizing the mechanical heterogeneity of human CAs using generalized anisotropic inverse mechanics, which uses biaxial stretching experiments and inverse analyses to determine the local Kelvin moduli and principal alignments within the tissue. Using this approach, we find that there is significant mechanical heterogeneity within a single acquired human CA. These results were confirmed using second harmonic generation imaging of the CA's fiber architecture and a correlation was observed. This approach provides a single-step method for determining the complex heterogeneous mechanics of CAs, which has important implications for future identification of metrics that can improve accuracy in prediction risk of rupture.

Journal ArticleDOI
TL;DR: In this article, the effects of exogenous opioids on cofilin and extracellular signal-regulated kinases (ERKs) were investigated in male and female mice.
Abstract: Recent studies have shown that chronic use of prescription or illicit opioids leads to an increased risk of cardiovascular events and pulmonary arterial hypertension. Indices of vascular age and arterial stiffness are also shown to be increased in opioid-dependent patients, with the effects being more marked in women. There are currently no studies investigating sex-specific vascular dysfunction in opioid use, and the mechanisms leading to opioid-induced vascular damage remain unknown. We hypothesized that exposure to exogenous opioids causes sex-specific vascular remodeling that will be more pronounced in female. Acknowledging the emerging roles of cofilins and extracellular signal-regulated kinases (ERKs) in mediating actin dynamics, we investigated the effects of morphine on these molecules. Twenty-four hour exposure to morphine increased inactivated cofilin and activated ERKs in resistance arteries from female mice, which may promote stress fiber over-assembly. We also performed continuous intraluminal infusion of morphine in pressurized resistance arteries from male and female mice using culture pressure myographs. We observed that morphine reduced the vascular diameter in resistance arteries from female, but not male mice. These results have significant implications for the previously unexplored role of exogenous opioids as a modifiable cardiovascular risk factor, especially in women.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the synergistic effects of Gleevec and rapamycin on the proliferative and angiogenic properties of mouse bone marrow-derived endothelial progenitor cells (EPCs).
Abstract: Objective This study investigates the synergistic effects of Gleevec (imatinib) and rapamycin on the proliferative and angiogenic properties of mouse bone marrow-derived endothelial progenitor cells (EPCs). Materials and methods EPCs were isolated from mouse bone marrow and treated with different concentrations of Gleevec or rapamycin individually or in combination. The cell viability and proliferation were examined using the MTT assay. An analysis of cell cycle and apoptosis was performed using flow cytometry. Formation of capillary-like tubes was examined in vitro, and the protein expression of cell differentiation markers was determined using Western blot analysis. Results Gleevec significantly reduced cell viability, cell proliferation, and induced cell apoptosis in EPCs. Rapamycin had similar effects on EPCs, but it did not induce cell apoptosis. The combination of Gleevec and rapamycin reduced the cell proliferation but increased cell apoptosis. Although rapamycin had no demonstratable effect on tube formation, the combined therapy of Gleevec and rapamycin significantly reduced tube formation when compared with Gleevec alone. Mechanistically, Gleevec, but not rapamycin, induced a significant elevation in caspase-3 activity in EPCs, and it attenuated the expression of the endothelial protein marker platelet-derived growth factor receptor α. Functionally, rapamycin, but not Gleevec, significantly enhanced the expression of endothelial differentiation marker proteins, while attenuating the expression of mammalian target of rapamycin signaling-related proteins. Conclusions Gleevec and rapamycin synergistically suppress cell proliferation and tube formation of EPCs by inducing cell apoptosis and endothelial differentiation. Mechanistically, it is likely that rapamycin enhances the proapoptotic and antiangiogenic effects of Gleevec by promoting the endothelial differentiation of EPCs. Given that EPCs are involved in the pathogenesis of some cardiovascular diseases and critical to angiogenesis, pharmacological inhibition of EPC proliferation by combined Gleevec and rapamycin therapy may be a promising approach for suppressing cardiovascular disease pathologies associated with angiogenesis.

Journal ArticleDOI
TL;DR: In this paper, transient receptor potential melastatin 7 (TRPM7) was shown to up-regulated with a concomitant translocation to the cytoplasm in the AFs stimulated with 20% MSS.
Abstract: Remodeling of the arteries is one of the pathological bases of hypertension. We have previously shown that transient receptor potential melastatin 7 (TRPM7) aggravates the vascular adventitial remodeling caused by pressure overload in the transverse aortic constriction (TAC) model. In this study, we sought to explore the functional expression and downstream signaling of TRPM7 in vascular adventitial fibroblasts (AFs) stimulated by mechanical stretching stress (MSS). The expression of TRPM7 was upregulated with a concomitant translocation to the cytoplasm in the AFs stimulated with 20% MSS. Meanwhile, the expression of α-smooth muscle actin (α-SMA), a marker of transformation from AFs to myofibroblasts (MFs) was also increased. Moreover, AF-conditioned medium caused a significant migration of macrophages after treatment with MSS and contained high levels of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Pharmacological and RNA interference approaches using the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB) and specific anti-TRPM7 small interfering RNA (si-RNA-TRPM7) abrogated these changes significantly. Further exploration uncloaked that inhibition of TRPM7 reduced the phosphorylation of p38 MAP kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) in the AFs stimulated with MSS. Furthermore, inhibition of the phosphorylation of p38MAPK or JNK could also alleviate the MSS-induced expression of α-SMA and secretion of inflammatory factors. These observations indicate that activated TRPM7 participates in the phenotypic transformation and inflammatory action of AFs in response to MSS through the p38MAPK/JNK pathway and suggest that TRPM7 may be a potential therapeutic target for vascular remodeling caused by hemodynamic changes in hypertension.

Journal ArticleDOI
TL;DR: The interplay between estrogens and AT2R in FMR is investigated using a model of ligation of feed arteries supplying collateral pathways in mouse mesenteric arteries in vivo, and E2 is necessary for AT1R-dependent diameter expansion in arteries submitted chronically to high blood flow.
Abstract: Flow-mediated outward remodeling (FMR) is involved in postischemic revascularization. Angiotensin II type 2 receptor (AT2R), through activation of T-cell-mediated IL-17 production, and estrogens are involved in FMR. Thus, we investigated the interplay between estrogens and AT2R in FMR using a model of ligation of feed arteries supplying collateral pathways in mouse mesenteric arteries in vivo. Arteries were collected after 2 (inflammatory phase), 4 (diameter expansion phase), and 7 days (remodeling completed). We used AT2R+/+ and AT2R-/- ovariectomized (OVX) female mice treated or not with 17-beta-estradiol (E2). Seven days after ligation, arterial diameter was larger in high flow (HF) compared to normal flow (NF) arteries. FMR was absent in OVX mice and restored by E2. AT2R gene expression was higher in HF than in NF arteries only in E2-treated OVX AT2R+/+ mice. CD11b and TNF alpha levels (inflammatory phase), MMP2 and TIMP1 (extracellular matrix digestion), and NOS3 (diameter expansion phase) expression levels were higher in HF than in NF arteries only in E2-treated AT2R+/+ mice, not in the other groups. Thus, E2 is necessary for AT2R-dependent diameter expansion, possibly through activation of T-cell AT2R, in arteries submitted chronically to high blood flow.

Journal ArticleDOI
TL;DR: In this article, a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue was developed, using FIJI analysis of hematoxylin/eosin stained sections, with ∼99% inter-rater reliability.
Abstract: Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.

Journal ArticleDOI
TL;DR: Investigation of the renal microvascular response to Ap4A, an agonist of P2Rs, in streptozotocin-induced diabetic rats found influence of A1R on P2R-mediated renal vasorelaxation is abolished under diabetic conditions.
Abstract: Diabetes through adenosine A1 receptor (A1R) and P2 receptors (P2Rs) may lead to disturbances in renal microvasculature. We investigated the renal microvascular response to Ap4A, an agonist of P2Rs, in streptozotocin-induced diabetic rats. Using laser Doppler flowmetry, renal blood perfusion (RBP) was measured during infusion of Ap4A alone or in the presence of A1R antagonist, either DPCPX (8-cyclopentyl-1,3-dipropylxanthine) or 8-cyclopentyltheophylline (CPT). Ap4A induced a biphasic response in RBP: a phase of rapid decrease was followed by a rapid increase, which was transient in diabetic rats but extended for 30 min in nondiabetic rats. Phase of decreased RBP was not affected by DPCPX or CPT in either group. Early and extended increases in RBP were prevented by DPCPX and CPT in nondiabetic rats, while in diabetic rats, the early increase in RBP was not affected by these antagonists. A1R mRNA and protein levels were increased in isolated glomeruli of diabetic rats, but no changes were detected in P2Y1R and P2Y2R mRNA. Presence of unblocked A1R is a prerequisite for the P2R-mediated relaxing effect of Ap4A in nondiabetic conditions, but influence of A1R on P2R-mediated renal vasorelaxation is abolished under diabetic conditions.

Journal ArticleDOI
TL;DR: In this article, the interplay between thromboangiitis obliterans (TAO) and pregnancy has been investigated, and the results show that pregnancy does not seem to interfere with the course of TAO.
Abstract: Data regarding women and thromboangiitis obliterans (TAO) are conflicted, and a few cases of pregnancy have been described. We aimed to describe the interplay between TAO and pregnancies. Among 224 TAO patients, 22.8% were women. Demographic data, clinical manifestations, and outcomes were similar between men and women. Twenty-one (41.2%) women had 48 pregnancies. Thirty-six (75%) pregnancies with on term and complication free delivery occurred. None of the patients experienced a disease flare of TAO during pregnancy. TAO does not seem to affect pregnancy complications, and pregnancy does not seem to interfere with the course of TAO.

Journal ArticleDOI
TL;DR: In this paper, the authors tested the hypothesis that endothelium-specific GTP cyclohydrolase I (GTPCH I) overexpression (Tg-GCH) restores age-associated endothelial dysfunction in vivo.
Abstract: This study tested the hypothesis that endothelium-specific GTP cyclohydrolase I (GTPCH I) overexpression (Tg-GCH) restores age-associated endothelial dysfunction in vivo. Aortic GTPCH I expression and serum nitric oxide (NO) release were measured in young and aged mice. Aortic rings from young and aged wild-type (WT) mice and aged Tg-GCH mice were suspended for isometric tension recording. A hind limb ischemia model was used to measure blood flow recovery. Aged mice showed reduced GTPCH I expression in the aorta and decreased NO levels in serum. Compared with aged WT mice, Tg-GCH significantly elevated NO levels in serum in aged Tg-GCH mice, restored the impaired aortic relaxation in response to acetylcholine, and significantly elevated aortic constriction in response to L-NAME. Importantly, aged Tg-GCH mice displayed a significant increase in blood flow recovery compared with aged WT mice. GTPCH I reduction contributes to aging-associated endothelial dysfunction, which can be retarded by Tg-GCH.

Journal ArticleDOI
TL;DR: An automatic artery/vein differentiation and a size measurement system utilizing machine learning algorithms are developed and a U-Net-based image analysis method could streamline the experimental approach.
Abstract: BACKGROUND Pressurized myography is useful for the assessment of small artery structures and function. However, this procedure requires technical expertise for sample preparation and effort to choose an appropriate sized artery. In this study, we developed an automatic artery/vein differentiation and a size measurement system utilizing machine learning algorithms. METHODS AND RESULTS We used 654 independent mouse mesenteric artery images for model training. The model yielded an Intersection-over-Union of 0.744 ± 0.031 and a Dice coefficient of 0.881 ± 0.016. The vessel size and lumen size calculated from the predicted vessel contours demonstrated a strong linear correlation with manually determined vessel sizes (R = 0.722 ± 0.048, p < 0.001 for vessel size and R = 0.908 ± 0.027, p < 0.001 for lumen size). Last, we assessed the relation between the vessel size before and after dissection using a pressurized myography system. We observed a strong positive correlation between the wall/lumen ratio before dissection and the lumen expansion ratio (R = 0.832, p < 0.01). Using multivariate binary logistic regression, 2 models estimating whether the vessel met the size criteria (lumen size of 160-240 μm) were generated with an area under the receiver operating characteristic curve of 0.761 for the upper limit and 0.747 for the lower limit. CONCLUSION The U-Net-based image analysis method could streamline the experimental approach.

Journal ArticleDOI
TL;DR: In this paper, DNA methylation profiling of the whole SREBF2 gene CpG island was performed and the Mann-Whitney U test was used for comparison between the two groups.
Abstract: Increasing evidence suggests that maternal cholesterol represents an important risk factor for atherosclerotic disease in offspring already during pregnancy, although the underlying mechanisms have not yet been elucidated. Eighteen human fetal aorta samples were collected from the spontaneously aborted fetuses of normal cholesterolemic and hypercholesterolemic mothers. Maternal total cholesterol levels were assessed during hospitalization. DNA methylation profiling of the whole SREBF2 gene CpG island was performed (p value <0.05). The Mann-Whitney U test was used for comparison between the 2 groups. For the first time, our study revealed that in fetal aortas obtained from hypercholesterolemic mothers, the SREBF2 gene shows 4 significant differentially hypermethylated sites in the 5'UTR-CpG island. This finding indicates that more effective long-term primary cardiovascular prevention programs need to be designed for the offspring of mothers with hypercholesterolemia. Further studies should be conducted to clarify the epigenetic mechanisms underlying the association between early atherogenesis and maternal hypercholesterolemia during pregnancy.

Journal ArticleDOI
TL;DR: The mesenteric arteries of male C57BL/6J mice and Wistar rats have subtle differences in the signaling mechanisms used to mediate vasoconstriction, which may inform animal model selection for preclinical studies.
Abstract: Introduction: The sympathetic nervous system can modulate arteriolar tone through release of adenosine triphosphate and norepinephrine, which bind to purinergic and adrenergic receptors (ARs), respectively. The expression pattern of these receptors, as well as the composition of neurotransmitters released from perivascular nerves (PVNs), can vary both in organ systems within and across species, such as mice and rats. Objective: This study explores the function of α1A subtypes in mouse and rat third-order mesenteric arteries and investigates PVN-mediated vasoconstriction to identify which neurotransmitters are released from sympathetic PVNs. Methods: Third-order mesenteric arteries from male C57BL/6J mice and Wistar rats were isolated and mounted on a wire myograph for functional assessment. Arteries were exposed to phenylephrine (PE) and then incubated with either α1A antagonist RS100329 (RS) or α1D antagonist BMY7378, before reexposure to PE. Electrical field stimulation was performed by passing current through platinum electrodes positioned adjacent to arteries in the absence and presence of a nonspecific alpha AR blocker phentolamine and/or P2X1-specific purinergic receptor blocker NF449. Results: Inhibition of α1 ARs by RS revealed that PE-induced vasoconstriction is primarily mediated through α1A and that the contribution of the α1A AR is greater in rats than in mice. In the mouse model, sympathetic nerve-mediated vasoconstriction is mediated by both ARs and purinergic receptors, whereas in rats, vasoconstriction appeared to only be mediated by ARs and a nonpurinergic neurotransmitter. Further, neither model demonstrated that α1D ARs play a significant role in PE-mediated vasoconstriction. Conclusions: The mesenteric arteries of male C57BL/6J mice and Wistar rats have subtle differences in the signaling mechanisms used to mediate vasoconstriction. As signaling pathways in humans under physiological and pathophysiological conditions become better defined, the current study may inform animal model selection for preclinical studies.

Journal ArticleDOI
TL;DR: In this article, Plasmalemmal vesicle-associated protein (PLVAP) localization and expression in the human liver during liver cirrhosis was investigated and shown to play a role in angiogenesis and sinusoidal remodeling.
Abstract: Introduction Plasmalemmal vesicle-associated protein (PLVAP) is an endothelial-specific integral membrane glycoprotein that localizes to caveolae and fenestrae in animal models; however, little is known about PLVAP in endothelial cells (ECs) in hepatic sinusoids during liver cirrhosis (LC). Here, we aimed to elucidate PLVAP localization and expression in the human liver during LC progression. Methods PLVAP protein expression was detected in specimens from normal control livers and hepatitis C-related cirrhotic livers using immunohistochemistry, Western blotting, and immunoelectron microscopy. Results PLVAP mainly localized to the peribiliary capillary plexus (PCP) and was rarely observed in hepatic artery branches and portal venules in control tissue, but was aberrantly expressed in capillarized sinusoids and proliferated capillaries in fibrotic septa within cirrhotic liver tissue. Ultrastructural analysis indicated that PLVAP localized to thin ECs in some caveolae, whereas PLVAP localized primarily to caveolae-like structures and proliferative sinusoid capillary EC vesicles in cirrhotic liver tissue. Western blot analysis confirmed that PLVAP was overexpressed at the protein level in advanced cirrhotic liver tissue. Conclusion PLVAP was strongly expressed in the caveolae of proliferated capillaries directly connected with sinusoids linked with the PCP, suggesting that it plays a role in angiogenesis and sinusoidal remodeling in LC.

Journal ArticleDOI
TL;DR: In this article, a morphological and mechanical evaluation of the resistance vasculature in health and diabetes mellitus was performed using two-photon fluorescence and second harmonic generation at varying transmural pressure.
Abstract: Introduction Microvascular remodelling is a symptom of cardiovascular disease. Despite the mechanical environment being recognized as a major contributor to the remodelling process, it is currently only understood in a rudimentary way. Objective A morphological and mechanical evaluation of the resistance vasculature in health and diabetes mellitus. Methods The cells and extracellular matrix of human subcutaneous resistance arteries from abdominal fat biopsies were imaged using two-photon fluorescence and second harmonic generation at varying transmural pressure. The results informed a two-layer mechanical model. Results Diabetic resistance arteries reduced in wall area as pressure was increased. This was attributed to the presence of thick, straight collagen fibre bundles that braced the outer wall. The abnormal mechanical environment caused the internal elastic lamina and endothelial and vascular smooth muscle cell arrangements to twist. Conclusions Our results suggest diabetic microvascular remodelling is likely to be stress-driven, comprising at least 2 stages: (1) Laying down of adventitial bracing fibres that limit outward distension, and (2) Deposition of additional collagen in the media, likely due to the significantly altered mechanical environment. This work represents a step towards elucidating the local stress environment of cells, which is crucial to build accurate models of mechanotransduction in disease.

Journal ArticleDOI
TL;DR: LRRFIP1 is involved in AGE-induced endothelial dysfunction via being regulated by the NF-κB/Hoxa9 axis.
Abstract: Background Pathogenesis of cardiovascular diseases begins with endothelial dysfunction. Our previous study has shown that advanced glycation end products (AGE) could inhibit the expression of homeobox A9 (Hoxa9), thereby inducing endothelial dysfunction. Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1) has been found to participate in a variety of pathological processes, but reports of its role in endothelial dysfunction are rare. Objectives This study aims to investigate whether LRRFIP1 is involved in AGE-induced endothelial dysfunction through Hoxa9-mediated transcriptional activation. Methods Chromatin immunoprecipitation was used to detect the transcriptional regulation of Hoxa9 on LRRFIP1 promoters. Human umbilical vein endothelial cells were treated with AGE or pyrrolidinedithiocarbamate (nuclear factor kappa-B [NF-κB] inhibitor). Moreover, changes in apoptosis, proliferation, migration, release of nitric oxide, and angiogenesis were detected. Results Hoxa9 promotes LRRFIP1 expression by binding to the -LRRFIP1 promoter. Meanwhile, overexpression of LRRFIP1 inhibited phosphorylation of P65 and elevated expression of Hoxa9. Overexpression of LRRFIP1 or/and Hoxa9 reversed the effects of AGE on HUVEC. AGE-induced inhibition on the expression of LRRFIP1 and Hoxa9 could be reversed by the NF-κB inhibitor. Conclusion LRRFIP1 is involved in AGE-induced endothelial dysfunction via being regulated by the NF-κB/Hoxa9 axis.