scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Virology in 2000"


Journal ArticleDOI
TL;DR: The results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.
Abstract: Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.

816 citations


Journal ArticleDOI
TL;DR: A model for the budding of HIV virions through lipid rafts is proposed whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafting.
Abstract: A number of recent studies have demonstrated the significance of detergent-insoluble, glycolipid-enriched membrane domains or lipid rafts, especially in regard to activation and signaling in T lymphocytes. These domains can be viewed as floating rafts composed of sphingolipids and cholesterol which sequester glycosylphosphatidylinositol (GPI)-linked proteins, such as Thy-1 and CD59. CD45, a 200-kDa transmembrane phosphatase protein, is excluded from these domains. We have found that human immunodeficiency virus type 1 (HIV-1) particles produced by infected T-cell lines acquire the GPI-linked proteins Thy-1 and CD59, as well as the ganglioside GM1, which is known to partition preferentially into lipid rafts. In contrast, despite its high expression on the cell surface, CD45 was poorly incorporated into virus particles. Confocal fluorescence microscopy revealed that HIV-1 proteins colocalized with Thy-1, CD59, GM1, and a lipid raft-specific fluorescent lipid, DiIC(16)(3), in uropods of infected Jurkat cells. CD45 did not colocalize with HIV-1 proteins and was excluded from uropods. Dot immunoassay of Triton X-100-extracted membrane fractions revealed that HIV-1 p17 matrix protein and gp41 were present in the detergent-resistant fractions and that [(3)H]myristic acid-labeled HIV Gag showed a nine-to-one enrichment in lipid rafts. We propose a model for the budding of HIV virions through lipid rafts whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafts.

786 citations


Journal ArticleDOI
TL;DR: The results of this study show that gp120-coreceptor interactions and the gp41 N-terminal heptad repeat independently contribute to sensitivity to T-20, which has important implications for the therapeutic uses of T- 20 as well as for unraveling the complex mechanisms of virus fusion and entry.
Abstract: T-20 is a synthetic peptide that potently inhibits replication of human immunodeficiency virus type 1 by interfering with the transition of the transmembrane protein, gp41, to a fusion active state following interactions of the surface glycoprotein, gp120, with CD4 and coreceptor molecules displayed on the target cell surface. Although T-20 is postulated to interact with an N-terminal heptad repeat within gp41 in a trans-dominant manner, we show here that sensitivity to T-20 is strongly influenced by coreceptor specificity. When 14 T-20-naive primary isolates were analyzed for sensitivity to T-20, the mean 50% inhibitory concentration (IC50) for isolates that utilize CCR5 for entry (R5 viruses) was 0.8 log10 higher than the mean IC50 for CXCR4 (X4) isolates (P = 0.0055). Using NL4.3-based envelope chimeras that contain combinations of envelope sequences derived from R5 and X4 viruses, we found that determinants of coreceptor specificity contained within the gp120 V3 loop modulate this sensitivity to T-20. The IC50 for all chimeric envelope viruses containing R5 V3 sequences was 0.6 to 0.8 log10 higher than that for viruses containing X4 V3 sequences. In addition, we confirmed that the N-terminal heptad repeat of gp41 determines the baseline sensitivity to T-20 and that the IC50 for viruses containing GIV at amino acid residues 36 to 38 was 1.0 log10 lower than the IC50 for viruses containing a G-to-D substitution. The results of this study show that gp120-coreceptor interactions and the gp41 N-terminal heptad repeat independently contribute to sensitivity to T-20. These results have important implications for the therapeutic uses of T-20 as well as for unraveling the complex mechanisms of virus fusion and entry.

742 citations


Journal ArticleDOI
TL;DR: It is proposed that spinoculation works by depositing virions on the surfaces of target cells and that diffusion is the major rate-limiting step for viral adsorption under routine in vitro pulsing conditions.
Abstract: The study of early events in the human immunodeficiency virus type 1 (HIV-1) life cycle can be limited by the relatively low numbers of cells that can be infected synchronously in vitro. Although the efficiency of HIV-1 infection can be substantially improved by centrifugal inoculation (spinoculation or shell vial methods), the underlying mechanism of enhancement has not been defined. To understand spinoculation in greater detail, we have used real-time PCR to quantitate viral particles in suspension, virions that associate with cells, and the ability of those virions to give rise to reverse transcripts. We report that centrifugation of HIV-1(IIIB) virions at 1,200 x g for 2 h at 25 degrees C increases the number of particles that bind to CEM-SS T-cell targets by approximately 40-fold relative to inoculation by simple virus-cell mixing. Following subsequent incubation at 37 degrees C for 5 h to allow membrane fusion and uncoating to occur, the number of reverse transcripts per target cell was similarly enhanced. Indeed, by culturing spinoculated samples for 24 h, approximately 100% of the target cells were reproducibly shown to be productively infected, as judged by the expression of p24(gag). Because the modest g forces employed in this procedure were found to be capable of sedimenting viral particles and because CD4-specific antibodies were effective at blocking virus binding, we propose that spinoculation works by depositing virions on the surfaces of target cells and that diffusion is the major rate-limiting step for viral adsorption under routine in vitro pulsing conditions. Thus, techniques that accelerate the binding of viruses to target cells not only promise to facilitate the experimental investigation of postentry steps of HIV-1 infection but should also help to enhance the efficacy of virus-based genetic therapies.

675 citations


Journal ArticleDOI
TL;DR: Data suggest that these four HCV-encoded enzymatic activities and the conserved 3′ terminal RNA element are essential for productive replication in vivo.
Abstract: Hepatitis C virus (HCV) infection is a widespread major human health concern. Significant obstacles in the study of this virus include the absence of a reliable tissue culture system and a small-animal model. Recently, we constructed full-length HCV cDNA clones and successfully initiated HCV infection in two chimpanzees by intrahepatic injection of in vitro-transcribed RNA (A. A. Kolykhalov et al., Science 277:570-574, 1997). In order to validate potential targets for development of anti-HCV therapeutics, we constructed six mutant derivatives of this prototype infectious clone. Four clones contained point mutations ablating the activity of the NS2-3 protease, the NS3-4A serine protease, the NS3 NTPase/helicase, and the NS5B polymerase. Two additional clones contained deletions encompassing all or part of the highly conserved 98-base sequence at the 3' terminus of the HCV genome RNA. The RNA transcript from each of the six clones was injected intrahepatically into a chimpanzee. No signs of HCV infection were detected in the 8 months following the injection. Inoculation of the same animal with nonmutant RNA transcripts resulted in productive HCV infection, as evidenced by viremia, elevated serum alanine aminotransferase, and HCV-specific seroconversion. These data suggest that these four HCV-encoded enzymatic activities and the conserved 3' terminal RNA element are essential for productive replication in vivo.

645 citations


Journal ArticleDOI
TL;DR: It is demonstrated here that the product of the HERV-W env gene is a highly fusogenic membrane glycoprotein, suggesting that they may play a physiological role during pregnancy and placenta formation.
Abstract: A new human endogenous retrovirus (HERV) family, termed HERV-W, was recently described (J.-L. Blond, F. Beseme, L. Duret, O. Bouton, F. Bedin, H. Perron, B. Mandrand, and F. Mallet, J. Virol. 73:1175-1185, 1999). HERV-W mRNAs were found to be specifically expressed in placenta cells, and an env cDNA containing a complete open reading frame was recovered. In cell-cell fusion assays, we demonstrate here that the product of the HERV-W env gene is a highly fusogenic membrane glycoprotein. Transfection of an HERV-W Env expression vector in a panel of cell lines derived from different species resulted in formation of syncytia in primate and pig cells upon interaction with the type D mammalian retrovirus receptor. Moreover, envelope glycoproteins encoded by HERV-W were specifically detected in placenta cells, suggesting that they may play a physiological role during pregnancy and placenta formation.

632 citations


Journal ArticleDOI
TL;DR: It is proposed that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.
Abstract: We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.

612 citations


Journal ArticleDOI
TL;DR: expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-κB pathway and of IFN-β synthesis in delNS1 virus-infected cells, demonstrating a functional link between NF-σB activation and IFn-α/β synthesis, and may play a key role in the pathogenesis of influenza A virus.
Abstract: The alpha/beta interferon (IFN-α/β) system represents one of the first lines of defense against virus infections. As a result, most viruses encode IFN antagonistic factors which enhance viral replication in their hosts. We have previously shown that a recombinant influenza A virus lacking the NS1 gene (delNS1) only replicates efficiently in IFN-α/β-deficient systems. Consistent with this observation, we found that infection of tissue culture cells with delNS1 virus, but not with wild-type influenza A virus, induced high levels of mRNA synthesis from IFN-α/β genes, including IFN-β. It is known that transactivation of the IFN-β promoter depends on NF-κB and several other transcription factors. Interestingly, cells infected with delNS1 virus showed high levels of NF-κB activation compared with those infected with wild-type virus. Expression of dominant-negative inhibitors of the NF-κB pathway during delNS1 virus infection prevented the transactivation of the IFN-β promoter, demonstrating a functional link between NF-κB activation and IFN-α/β synthesis in delNS1 virus-infected cells. Moreover, expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-κB pathway and of IFN-β synthesis. This inhibitory property of the NS1 protein of influenza A virus was dependent on its ability to bind dsRNA, supporting a model in which binding of NS1 to dsRNA generated during influenza virus infection prevents the activation of the IFN system. NS1-mediated inhibition of the NF-κB pathway may thus play a key role in the pathogenesis of influenza A virus.

574 citations


Journal ArticleDOI
TL;DR: SIV enters the vaginal mucosa within 60 min of intravaginal exposure, infecting primarily intraepithelial DC and that SIV-infected cells are located in draining lymph nodes within 18 h of intrabaginal SIV exposure, posing a serious challenge to HIV vaccine development.
Abstract: Despite recent insights into mucosal human immunodeficiency virus (HIV) transmission, the route used by primate lentiviruses to traverse the stratified squamous epithelium of mucosal surfaces remains undefined. To determine if dendritic cells (DC) are used by primate lentiviruses to traverse the epithelial barrier of the genital tract, rhesus macaques were intravaginally exposed to cell-free simian immunodeficiency virus SIVmac251. We examined formalin-fixed tissues and HLA-DR(+)-enriched cell suspensions to identify the cells containing SIV RNA in the genital tract and draining lymph nodes within the first 24 h of infection. Using SIV-specific fluorescent in situ hybridization combined with immunofluorescent antibody labeling of lineage-specific cell markers, numerous SIV RNA(+) DC were documented in cell suspensions from the vaginal epithelium 18 h after vaginal inoculation. In addition, we determined the minimum time that the SIV inoculum must remain in contact with the genital mucosa for the virus to move from the vaginal lumen into the mucosa. We now show that SIV enters the vaginal mucosa within 60 min of intravaginal exposure, infecting primarily intraepithelial DC and that SIV-infected cells are located in draining lymph nodes within 18 h of intravaginal SIV exposure. The speed with which primate lentiviruses penetrate mucosal surfaces, infect DC, and disseminate to draining lymph nodes poses a serious challenge to HIV vaccine development.

557 citations


Journal ArticleDOI
TL;DR: A disulfide bond is introduced between the C-terminal region of gp120 and the immunodominant segment of the gp41 ectodomain, producing a properly folded envelope glycoprotein complex which has antigenic properties which resemble those of the virion-associated complex.
Abstract: The few antibodies that can potently neutralize human immunodeficiency virus type 1 (HIV-1) recognize the limited number of envelope glycoprotein epitopes exposed on infectious virions. These native envelope glycoprotein complexes comprise three gp120 subunits noncovalently and weakly associated with three gp41 moieties. The individual subunits induce neutralizing antibodies inefficiently but raise many nonneutralizing antibodies. Consequently, recombinant envelope glycoproteins do not elicit strong antiviral antibody responses, particularly against primary HIV-1 isolates. To try to develop recombinant proteins that are better antigenic mimics of the native envelope glycoprotein complex, we have introduced a disulfide bond between the C-terminal region of gp120 and the immunodominant segment of the gp41 ectodomain. The resulting gp140 protein is processed efficiently, producing a properly folded envelope glycoprotein complex. The association of gp120 with gp41 is now stabilized by the supplementary intermolecular disulfide bond, which forms with approximately 50% efficiency. The gp140 protein has antigenic properties which resemble those of the virion-associated complex. This type of gp140 protein may be worth evaluating for immunogenicity as a component of a multivalent HIV-1 vaccine.

552 citations


Journal ArticleDOI
TL;DR: Data are presented indicating that escape of AAV from the endosome and trafficking of viral particles to the nucleus are unaffected by the presence of adenovirus, the primary helper virus for a productive AAV infection.
Abstract: We have investigated the infectious entry pathway of adeno-associated virus (AAV) and recombinant AAV vectors by assessing AAV-mediated gene transfer and by covalently conjugating fluorophores to AAV and monitoring entry by fluorescence microscopy. We examined AAV entry in HeLa cells and in HeLa cell lines which inducibly expressed a dominant interfering mutant of dynamin. The data demonstrate that AAV internalizes rapidly by standard receptor-mediated endocytosis from clathrin-coated pits (half-time <10 min). The lysosomotropic agents ammonium chloride and bafilomycin A1 prevent AAV-mediated gene transfer when present during the first 30 min after the onset of endocytosis, indicating that AAV escapes from early endosomes yet requires an acidic environment for penetration into the cytosol. Following release from the endosome, AAV rapidly moves to the cell nucleus and accumulates perinuclearly beginning within 30 min after the onset of endocytosis. We present data indicating that escape of AAV from the endosome and trafficking of viral particles to the nucleus are unaffected by the presence of adenovirus, the primary helper virus for a productive AAV infection. Within 2 h, viral particles could be detected within the cell nucleus, suggesting that AAV enters the nucleus prior to uncoating. Interestingly, the majority of the intracellular virus particles remain in a stable perinuclear compartment even though gene expression from nuclear AAV genomes can be detected. This suggests that the process of nuclear entry is rate limiting or that AAV entry involves multiple pathways. Nevertheless, these data establish specific points in the AAV infectious entry process and have allowed the generation of a model for future expansion to specific cell types and AAV vector analysis in vivo.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity.
Abstract: The distribution of sialic acid (SA) species varies among animal species, but the biological role of this variation is largely unknown. Influenza viruses differ in their ability to recognize SA-galactose (Gal) linkages, depending on the animal hosts from which they are isolated. For example, human viruses preferentially recognize SA linked to Gal by the α2,6(SAα2,6Gal) linkage, while equine viruses favor SAα2,3Gal. However, whether a difference in relative abundance of specific SA species (N-acetylneuraminic acid [NeuAc] and N-glycolylneuraminic acid [NeuGc]) among different animals affects the replicative potential of influenza viruses is uncertain. We therefore examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity. A virus with an HA recognizing NeuAcα2,6Gal but not NeuAcα2,3Gal or NeuGcα2,3Gal failed to replicate in horses, while one with an HA recognizing the NeuGcα2,3Gal moiety replicated in horses. Furthermore, biochemical and immunohistochemical analyses and a lectin-binding assay demonstrated the abundance of the NeuGcα2,3Gal moiety in epithelial cells of horse trachea, indicating that recognition of this moiety is critical for viral replication in horses. Thus, these results provide evidence of a biological effect of different SA species in different animals.

Journal ArticleDOI
TL;DR: Poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins, which is consistent with an autophagic origin for these membranes.
Abstract: All positive-strand RNA viruses of eukaryotes studied assemble RNA replication complexes on the surfaces of cytoplasmic membranes. Infection of mammalian cells with poliovirus and other picornaviruses results in the accumulation of dramatically rearranged and vesiculated membranes. Poliovirus-induced membranes did not cofractionate with endoplasmic reticulum (ER), lysosomes, mitochondria, or the majority of Golgi-derived or endosomal membranes in buoyant density gradients, although changes in ionic strength affected ER and virus-induced vesicles, but not other cellular organelles, similarly. When expressed in isolation, two viral proteins of the poliovirus RNA replication complex, 3A and 2C, cofractionated with ER membranes. However, in cells that expressed 2BC, a proteolytic precursor of the 2B and 2C proteins, membranes identical in buoyant density to those observed during poliovirus infection were formed. When coexpressed with 2BC, viral protein 3A was quantitatively incorporated into these fractions, and the membranes formed were ultrastructurally similar to those in poliovirus-infected cells. These data argue that poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins. The double-membraned morphology, cytosolic content, and apparent ER origin of poliovirus-induced membranes are all consistent with an autophagic origin for these membranes.

Journal ArticleDOI
TL;DR: The data suggest that the immune response to HCMV is periodically boosted by a low level of H CMV replication and that sustained immunological surveillance contributes to the maintenance of host-pathogen homeostasis.
Abstract: Human cytomegalovirus (HCMV) infection is largely asymptomatic in the immunocompetent host, but remains a major cause of morbidity in immunosuppressed individuals. Using the recently described technique of staining antigen-specific CD8 + T cells with peptide-HLA tetrameric complexes, we have demonstrated high levels of antigen-specific cells specific for HCMV peptides and show that this may exceed 4% of CD8 + T cells in immunocompetent donors. Moreover, by staining with tetramers in combination with antibodies to cell surface markers and intracellular cytokines, we demonstrate functional heterogeneity of HCMV-specific populations. A substantial proportion of these are effector cytotoxic T lymphocytes, as demonstrated by their ability to lyse peptide-pulsed targets in “fresh” killing assays. These data suggest that the immune response to HCMV is periodically boosted by a low level of HCMV replication and that sustained immunological surveillance contributes to the maintenance of host-pathogen homeostasis. These observations should improve our understanding of the immunobiology of persistent viral infection.

Journal ArticleDOI
TL;DR: The presence of HCoV in human brains is consistent with neuroinvasion by these respiratory pathogens, and the presence of viral RNA in brain parenchyma, outside blood vessels is confirmed.
Abstract: Human coronaviruses (HCoV) cause common colds but can also infect neural cell cultures. To provide definitive experimental evidence for the neurotropism and neuroinvasion of HCoV and its possible association with multiple sclerosis (MS), we have performed an extensive search and characterization of HCoV RNA in a large panel of human brain autopsy samples. Very stringent reverse transcription-PCR with two primer pairs for both viral strains (229E and OC43), combined with Southern hybridization, was performed on samples from 90 coded donors with various neurological diseases (39 with MS and 26 with other neurological diseases) or normal controls (25 patients). We report that 44% (40 of 90) of donors were positive for 229E and that 23% (21 of 90) were positive for OC43. A statistically significant higher prevalence of OC43 in MS patients (35.9%; 14 of 39) than in controls (13.7%; 7 of 51) was observed. Sequencing of nucleocapsid protein (N) gene amplicons revealed point mutations in OC43, some consistently found in three MS patient brains and one normal control but never observed in laboratory viruses. In situ hybridization confirmed the presence of viral RNA in brain parenchyma, outside blood vessels. The presence of HCoV in human brains is consistent with neuroinvasion by these respiratory pathogens. Further studies are needed to distinguish between opportunistic and disease-associated viral presence in human brains.

Journal ArticleDOI
TL;DR: In vitro experiments showed that insertion of the serpin receptor ligand in the N-terminal regions of VP1 or VP2 can change the tropism of AAV, and these results provide information on AAV capsid functional domains and are useful for future design of A AV vectors for targeting of specific tissues.
Abstract: Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be β-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag insertions identified several other regions that were on the surface of the capsid. These included insertions at amino acids 1, 34, 138, 266, 447, 591, and 664. Positions 1 and 138 were the N termini of VP1 and VP2, respectively; position 34 was exclusively in VP1; the remaining surface positions were located in putative loop regions of VP3. The remaining mutants, most of them partially defective, were presumably defective in steps of viral entry that were not tested in the preliminary screening, including intracellular trafficking, viral uncoating, or coreceptor binding. Finally, in vitro experiments showed that insertion of the serpin receptor ligand in the N-terminal regions of VP1 or VP2 can change the tropism of AAV. Our results provide information on AAV capsid functional domains and are useful for future design of AAV vectors for targeting of specific tissues.

Journal ArticleDOI
Satoshi Ishido1, Chunyang Wang1, Bok-Soo Lee1, George B. Cohen1, Jae U. Jung1 
TL;DR: Results demonstrate that Kaposi's sarcoma-associated herpesvirus has evolved a novel immune evasion mechanism by harboring similar but distinct genes, K3 and K5, which target MHC class I molecules in different ways.
Abstract: The T-cell-mediated immune response plays a central role in the defense against intracellular pathogens. To avoid this immune response, viruses have evolved elaborate mechanisms that target and modulate many different aspects of the host's immune system. A target common to many of these viruses is the major histocompatibility complex (MHC) class I molecules. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes K3 and K5 zinc finger membrane proteins which remove MHC class I molecules from the cell surface. K3 and K5 exhibit 40% amino acid identity to each other and localize primarily near the plasma membrane. While K3 and K5 dramatically downregulated class I molecules, they displayed different specificities in downregulation of HLA allotypes. K5 significantly downregulated HLA-A and -B and downregulated HLA-C only weakly, but not HLA-E, whereas K3 downregulated all four HLA allotypes. This selective downregulation of HLA allotypes by K5 was partly due to differences in amino acid sequences in their transmembrane regions. Biochemical analyses demonstrated that while K3 and K5 did not affect expression and intracellular transport of class I molecules, their expression induced rapid endocytosis of the molecules. These results demonstrate that KSHV has evolved a novel immune evasion mechanism by harboring similar but distinct genes, K3 and K5, which target MHC class I molecules in different ways.

Journal ArticleDOI
TL;DR: The SD0 mutant of influenza virus A/WSN/33 (WSN), characterized by a 24-amino-acid deletion in the neuraminidase stalk, does not grow in embryonated chicken eggs because of defective NA function, demonstrating that balanced HA-NA functions are necessary for efficient influenza virus replication.
Abstract: The SD0 mutant of influenza virus A/WSN/33 (WSN), characterized by a 24-amino-acid deletion in the neuraminidase (NA) stalk, does not grow in embryonated chicken eggs because of defective NA function. Continuous passage of SD0 in eggs yielded 10 independent clones that replicated efficiently. Characterization of these egg-adapted viruses showed that five of the viruses contained insertions in the NA gene from the PB1, PB2, or NP gene, in the region linking the transmembrane and catalytic head domains, demonstrating that recombination of influenza viral RNA segments occurs relatively frequently. The other five viruses did not contain insertions in this region but displayed decreased binding affinity toward sialylglycoconjugates, compared with the binding properties of the parental virus. Sequence analysis of one of the latter viruses revealed mutations in the hemagglutinin (HA) gene, at sites in close proximity to the sialic acid receptor-binding pocket. These mutations appear to compensate for reduced NA function due to stalk deletions. Thus, balanced HA-NA functions are necessary for efficient influenza virus replication.

Journal ArticleDOI
TL;DR: A chimeric vector was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid and allowed for gene transfer into a broader spectrum of CD34+ cells, including subsets with potential stem cell capacity.
Abstract: Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and αv integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34+ cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34+ cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an αv integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34+ cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34+ cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34+ cells expressing αv integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34+ cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34+ cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34+ c-Kit+ cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34+ c-Kit+ cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells.

Journal ArticleDOI
TL;DR: The results obtained indicate that HIV-1 undergoes approximately two to three recombination events per genome per replication cycle, implying that both HIV-2 RNAs are typically utilized during reverse transcription and that recombination is an important aspect of HIV- 1 replication.
Abstract: The diploid nature of human immunodeficiency virus type 1 (HIV-1) indicates that recombination serves a central function in virus replication and evolution. Previously, while examining the nature of obligatory primer strand transfers during reverse transcription, a high rate of recombination was observed at the ends of the viral genome within the viral long terminal repeats, prompting the following question: does recombination occur at a high rate throughout the genome? To address this question, two vectors based upon different strains of HIV-1 were utilized. The vectors were comprised predominantly of autologous HIV-1 sequence and were approximately the same size as the parental genome. The proviral progeny of heterodimeric virions were analyzed after a single cycle of replication, and the sequence heterogeneity between the two strains allowed direct examination of recombination crossovers. The results obtained indicate that HIV-1 undergoes approximately two to three recombination events per genome per replication cycle. These results imply that both HIV-1 RNAs are typically utilized during reverse transcription and that recombination is an important aspect of HIV-1 replication.

Journal ArticleDOI
TL;DR: Swab samples collected from five different sites on the skin of renal transplant recipients, dialysis patients, and age- and sex-matched healthy controls were analyzed for HPV DNA by a newly designed PCR test, demonstrating that normal human skin harbors an array of papillomaviruses, most of them previously unknown.
Abstract: Human papillomaviruses (HPV) are epitheliotropic viruses, with some types suggested to be associated with skin cancer. In this study, swab samples collected from five different sites on the skin of renal transplant recipients, dialysis patients, and age- and sex-matched healthy controls were analyzed for HPV DNA by a newly designed PCR test. Most individuals were found to have asymptomatic HPV infections; more specifically, 94% of the renal transplant patients, 82% of the dialysis patients, and 80% of the healthy controls were positive for HPV DNA. The multiplicity of the HPVs detected was astounding: 20 previously described and 30 putatively new types were identified by cloning and sequencing of 33 samples from 13 individuals. These results demonstrate that normal human skin harbors an array of papillomaviruses, most of them previously unknown.

Journal ArticleDOI
TL;DR: Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt− and NAt− viruses, indicating that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.
Abstract: Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt- or NAt-) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M(1)) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt- or NAt- virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M(2) protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt- and NAt- is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt- and NAt- viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.

Journal ArticleDOI
TL;DR: Analysis of the 1999 swine H3N2 isolates showed that the internal gene complex of the triple-reassortant viruses was associated with three recent phylogenetically distinct human-like hemagglutinin (HA) molecules, which supports continued surveillance of U.S. swine populations for influenza virus activity.
Abstract: During 1998, severe outbreaks of influenza were observed in four swine herds in the United States. This event was unique because the causative agents, H3N2 influenza viruses, are infrequently isolated from swine in North America. Two antigenically distinct reassortant viruses (H3N2) were isolated from infected animals: a double-reassortant virus containing genes similar to those of human and swine viruses, and a triple-reassortant virus containing genes similar to those of human, swine, and avian influenza viruses (N. N. Zhou, D. A. Senne, J. S. Landgraf, S. L. Swenson, G. Erickson, K. Rossow, L. Liu, K.-J. Yoon, S. Krauss, and R. G. Webster, J. Virol. 73:8851–8856, 1999). Because the U.S. pig population was essentially naive in regard to H3N2 viruses, it was important to determine the extent of viral spread. Hemagglutination inhibition (HI) assays of 4,382 serum samples from swine in 23 states indicated that 28.3% of these animals had been exposed to classical swine-like H1N1 viruses and 20.5% had been exposed to the triple-reassortant-like H3N2 viruses. The HI data suggested that viruses antigenically related to the double-reassortant H3N2 virus have not become widespread in the U.S. swine population. The seroreactivity levels in swine serum samples and the nucleotide sequences of six additional 1999 isolates, all of which were of the triple-reassortant genotype, suggested that H3N2 viruses containing avian PA and PB2 genes had spread throughout much of the country. These avian-like genes cluster with genes from North American avian viruses. The worldwide predominance of swine viruses containing an avian-like internal gene component suggests that these genes may confer a selective advantage in pigs. Analysis of the 1999 swine H3N2 isolates showed that the internal gene complex of the triple-reassortant viruses was associated with three recent phylogenetically distinct human-like hemagglutinin (HA) molecules. Acquisition of HA genes from the human virus reservoir will significantly affect the efficacy of the current swine H3N2 vaccines. This finding supports continued surveillance of U.S. swine populations for influenza virus activity.

Journal ArticleDOI
TL;DR: Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti and Aedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmission among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes.
Abstract: Dengue viruses (DEN) (Flaviviridae: Flavivirus) are serious human pathogens that occur nearly throughout the tropics, with ca. 100 million cases annually (16). DEN comprise four serotypes (DEN-1 to DEN-4); although epidemiologically similar, they are genetically and antigenically distinct. Infection with one serotype leads to lifelong protection against homologous reinfection but only brief protection against heterologous challenge (21, 38). DEN cause dengue fever, a self-limited febrile illness lasting 2 to 10 days that has been known in the medical literature for over 200 years. Infrequent epidemics of dengue fever occurred in tropical areas until the 1950s. After War World II, this pattern of disease was disrupted by the emergence of dengue hemorrhagic fever and dengue shock syndrome, more severe diseases characterized by thrombocytopenia, hemorrhage, and excessive plasma leakage (16, 28). Two principal hypotheses have been proposed to explain the hemorrhagic form of disease: (i) the immune enhancement theory maintains that hemorrhage occurs in secondary infections when DEN-specific antibodies and memory T cells resulting from primary infection with another serotype enhance the binding of virus-immunoglobulin G complexes to FcY receptors on monocytic cells, and (ii) certain phenotypes of DEN are more virulent than others. Recent phylogenetic studies suggest that an Asian genotype of DEN-2 recently introduced into the New World may be associated with increased risk for hemorrhagic fever and shock in the presence of heterologous antibody (32). DEN strains of reduced virulence have also been described; endemic transmission on the South Pacific islands of Tonga, involving vectors other than Aedes aegypti, may result in less severe disease because of the lesser selection for high viremia imposed by more susceptible vectors, like Aedes polynesiensis (13). Two distinct DEN transmission cycles occur: (i) endemic and epidemic DEN involving human hosts and transmission by A. aegypti, with Aedes albopictus and other Aedes mosquitoes serving as secondary vectors, and (ii) a zoonotic or sylvatic cycle in sylvatic habitats of Africa and Malaysia, involving nonhuman primate reservoir hosts and several different Aedes mosquitoes (12, 16). Although A. aegypti plays a greater role in urban transmission, A. albopictus and some other secondary Aedes vectors are generally more susceptible to experimental infection (12). Considerable variation in susceptibility and transmission efficiency among geographic populations of both A. aegypti and A. albopictus has also been demonstrated (14, 15). A. aegypti has reinfested most of the neotropics since its partial eradication earlier this century, resulting in reemergence of neotropical dengue (13). The sylvatic transmission cycles of DEN have received little study. In West Africa, nonhuman primate cycles have been identified in several countries. DEN-2 has been isolated from Aedes (S.) africanus, Aedes (S.) leuteocephalus, Aedes (S.) opok, Aedes (D.) taylori, and Aedes (D.) furcifer (5, 33). African DEN-2 sylvatic isolates are genetically distinct from all endemic/epidemic isolates and are believed to be evolutionarily distinct (12, 16, 31). In Malaysia, all four serotypes of DEN are maintained in canopy-dwelling Aedes niveus mosquitoes and nonhuman primates (34–37). DEN-1, -2, and -4 were isolated from sentinel monkeys, and monkey seroconversion was demonstrated against DEN-1, -2, and -3. DEN-4 was also isolated from canopy collections of A. niveus mosquitoes (35). Gubler (13) has hypothesized that endemic/epidemic DEN evolved from sylvatic forms of the viruses that utilize nonhuman primate hosts and gallery forest Aedes vectors (i.e., not A. aegypti or A. albopictus). To test this hypothesis, we have sequenced the complete envelope (E) protein gene of DEN-1, -2, and -4 strains isolated in primary tropical forest habitats in Malaysia by Albert Rudnick and colleagues during the 1960s and 1970s (36, 37), as well as DEN-2 strains from sylvatic locations in West Africa analyzed previously using other, smaller genome regions (31). Phylogenetic analyses indicated that the endemic/epidemic lineages of DEN-1, -2, and -4 evolved independently from sylvatic viruses circulating in the Asian-Oceania region. Estimates of divergence times suggested that emergences of endemic/epidemic DEN occurred on the order of 100 to 1,500 years ago.

Journal ArticleDOI
TL;DR: Results show that the lack of functional PKR permits the delNS1 virus to replicate in otherwise nonpermissive hosts, suggesting that the major function of the influenza virus NS1 protein is to counteract or prevent the PKR-mediated antiviral response.
Abstract: The availability of an influenza virus NS1 gene knockout virus (delNS1 virus) allowed us to establish the significance of the biological relationship between the influenza virus NS1 protein and double-stranded-RNA-activated protein kinase (PKR) in the life cycle and pathogenicity of influenza virus. Our results show that the lack of functional PKR permits the delNS1 virus to replicate in otherwise nonpermissive hosts, suggesting that the major function of the influenza virus NS1 protein is to counteract or prevent the PKR-mediated antiviral response.

Journal ArticleDOI
TL;DR: Experimental studies showed that both H9N2 lineages were primarily spread by the aerosol route and that neither quail nor chickens showed evidence of disease, suggesting that they are in the process of adapting to a new host.
Abstract: The transmission of H9N2 influenza viruses to humans and the realization that the A/Hong Kong/156/97-like (H5N1) (abbreviated HK/156/97) genome complex may be present in H9N2 viruses in southeastern China necessitated a study of the distribution and characterization of H9N2 viruses in poultry in the Hong Kong SAR in 1999. Serological studies indicated that H9N2 influenza viruses had infected a high proportion of chickens and other land-based birds (pigeon, pheasant, quail, guinea fowl, and chukka) from southeastern China. Two lineages of H9N2 influenza viruses present in the live-poultry markets were represented by A/Quail/Hong Kong/G1/97 (Qa/HK/G1/97)-like and A/Duck/Hong Kong/Y280/97 (Dk/HK/Y280/97)-like viruses. Up to 16% of cages of quail in the poultry markets contained Qa/HK/G1/97-like viruses, while about 5% of cages of other land-based birds were infected with Dk/HK/Y280/97-like viruses. No reassortant between the two H9N2 virus lineages was detected despite their cocirculation in the poultry markets. Reassortant viruses represented by A/Chicken/Hong Kong/G9/97 (H9N2) were the major H9N2 influenza viruses circulating in the Hong Kong markets in 1997 but have not been detected since the chicken slaughter in 1997. The Qa/HK/G1/97-like viruses were frequently isolated from quail, while Dk/HK/Y280/97-like viruses were predominately associated with chickens. The Qa/HK/G1/97-like viruses were evolving relatively rapidly, especially in their PB2, HA, NP, and NA genes, suggesting that they are in the process of adapting to a new host. Experimental studies showed that both H9N2 lineages were primarily spread by the aerosol route and that neither quail nor chickens showed evidence of disease. The high prevalence of quail infected with Qa/HK/G1/97-like virus that contains six gene segments genetically highly related to HK/156/97 (H5N1) virus emphasizes the need for surveillance of mammals including humans.

Journal ArticleDOI
TL;DR: FMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants that have regained the ability to replicate in murine cells.
Abstract: Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells.

Journal ArticleDOI
TL;DR: Investigating the assembly of HCMV by determining the intracellular trafficking of the abundant tegument protein pp150 (UL32) in productively infected human fibroblasts indicated that pp150 remained within the cytoplasm throughout the replicative cycle of H CMV and accumulated in a stable, juxtanuclear structure late in infection.
Abstract: The assembly of human cytomegalovirus (HCMV) is thought to be similar to that which has been proposed for alphaherpesviruses and involve envelopment of tegumented subviral particles at the nuclear membrane followed by export from the cell by a poorly defined pathway. However, several studies have shown that at least two tegument virion proteins remain in the cytoplasm during the HCMV replicative cycle, thereby suggesting that HCMV cannot acquire its final envelope at the nuclear envelope. We investigated the assembly of HCMV by determining the intracellular trafficking of the abundant tegument protein pp150 (UL32) in productively infected human fibroblasts. Our results indicated that pp150 remained within the cytoplasm throughout the replicative cycle of HCMV and accumulated in a stable, juxtanuclear structure late in infection. Image analysis using a variety of cell protein-specific antibodies indicated that the pp150-containing structure was not a component of the endoplasmic reticulum, (ER), ER-Golgi intermediate compartment, cis or medial Golgi, or lysosomes. Partial colocalization of the structure was noted with the trans-Golgi network, and it appeared to lie in close proximity to the microtubule organizing center. Two additional tegument proteins (pp28 and pp65) and three envelope glycoproteins (gB, gH, and gp65) localized in this same structure late infection. This compartment appeared to be relatively stable since pp150, pp65, and the processed form of gB could be coisolated following cell fractionation. Our findings indicated that pp150 was expressed exclusively within the cytoplasm throughout the infectious cycle of HCMV and that the accumulation of the pp150 in this cytoplasmic structure was accompanied by at least five other virion proteins. These results suggested the possibility that this virus-induced structure represented a cytoplasmic site of virus assembly.

Journal ArticleDOI
TL;DR: It is demonstrated that the matrix (M1) protein is the only viral component which is essential for VLP formation and that the viral ribonucleoproteins are not required for virus particle formation.
Abstract: To get insights into the role played by each of the influenza A virus polypeptides in morphogenesis and virus particle assembly, the generation of virus-like particles (VLPs) has been examined in COS-1 cell cultures expressing, from recombinant plasmids, different combinations of the viral structural proteins. The presence of VLPs was examined biochemically, following centrifugation of the supernatants collected from transfected cells through sucrose cushions and immunoblotting, and by electron-microscopic analysis. It is demonstrated that the matrix (M1) protein is the only viral component which is essential for VLP formation and that the viral ribonucleoproteins are not required for virus particle formation. It is also shown that the M1 protein, when expressed alone, assembles into virus-like budding particles, which are released in the culture medium, and that the recombinant M1 protein accumulates intracellularly, forming tubular structures. All these results are discussed with regard to the roles played by the virus polypeptides during virus assembly.

Journal ArticleDOI
TL;DR: YY1 and LSF may establish transcriptional and virological latency of HIV, a state that has recently been recognized in vivo and has significant implications for the long-term treatment of AIDS.
Abstract: Enigmatic mechanisms restore the resting state in activated lymphocytes following human immunodeficiency virus type 1 (HIV-1) infection, rarely allowing persistent nonproductive infection. We detail a mechanism whereby cellular factors could establish virological latency. The transcription factors YY1 and LSF cooperate in repression of transcription from the HIV-1 long terminal repeat (LTR). LSF recruits YY1 to the LTR via the zinc fingers of YY1. The first two zinc fingers were observed to be sufficient for this interaction in vitro. A mutant of LSF incapable of binding DNA blocked repression. Like other transcriptional repressors, YY1 can function via recruitment of histone deacetylase (HDAC). We find that HDAC1 copurifies with the LTR-binding YY1-LSF repressor complex, the domain of YY1 that interacts with HDAC1 is required to repress the HIV-1 promoter, expression of HDAC1 augments repression of the LTR by YY1, and the deacetylase inhibitor trichostatin A blocks repression mediated by YY1. This novel link between HDAC recruitment and inhibition of HIV-1 expression by YY1 and LSF, in the natural context of a viral promoter integrated into chromosomal DNA, is the first demonstration of a molecular mechanism of repression of HIV-1. YY1 and LSF may establish transcriptional and virological latency of HIV, a state that has recently been recognized in vivo and has significant implications for the long-term treatment of AIDS.