scispace - formally typeset
Search or ask a question

Showing papers in "Magnetic Resonance in Medicine in 2011"


Journal ArticleDOI
TL;DR: The focus of this review is on basic magnetic resonance principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast.
Abstract: Chemical exchange saturation transfer (CEST) imaging is a relatively new magnetic resonance imaging contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic magnetic resonance principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast. In CEST magnetic resonance imaging, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to magnetization transfer contrast, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to magnetization transfer contrast, CEST imaging requires sufficiently slow exchange on the magnetic resonance time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans.

866 citations


Journal ArticleDOI
TL;DR: This article reviews the recent advances in diffusion tensor imaging and three-dimensional reconstruction technologies for white matter tracts since 2000, including more sophisticated nontensor models to describe diffusion properties and to extract finer anatomical information from each voxel.
Abstract: The diffusion of water molecules inside organic tissues is often anisotropic (1) Namely, if there are aligned structures in the tissue, the apparent diffusion coefficient (ADC) of water may vary depending on the orientation along which the diffusion-weighted (DW) measurements are taken In the late 1980s, diffusion-weighted imaging (DWI) became possible by combining MR diffusion measurements with imaging, enabling the mapping of both diffusion constants and diffusion anisotropy inside the brain and revealing valuable information about axonal architectures (2-14) In the beginning of the 1990s, the diffusion tensor model was introduced to describe the degree of anisotropy and the structural orientation information quantitatively (15,16) This diffusion tensor imaging (DTI) approach provided a simple and elegant way to model this complex neuroanatomical information using only six parameters Since then, we have witnessed a tremendous amount of growth in this research field, including more sophisticated nontensor models to describe diffusion properties and to extract finer anatomical information from each voxel Three-dimensional (3D) reconstruction technologies for white matter tracts are also developing beyond the initial deterministic line-propagation models (17-20) As these new reconstruction methods are an area of very active research, it is important to remember that the theory cannot be dissociated from practical aspects of the technology Importantly, DWI is inherently a noise-sensitive and artifact-prone technique (Fig 1) Thus, we cannot overemphasize the importance of image quality assurance and robust image analysis techniques Last but not least, data acquisition technologies have also been steadfastly evolving In this article, we review the recent advances in these areas since 2000 FIG 1 Examples of typical artifacts: (i) signal/slice dropouts, (ii) eddy-current induced geometric distortions, (iii) systematic vibration artifacts, and (iv) ghosting (insufficient/incorrect fat-suppression)

825 citations


Journal ArticleDOI
TL;DR: This work introduces the new concept of total generalized variation for magnetic resonance imaging, a new mathematical framework, which is a generalization of the total variation theory and which eliminates these restrictions.
Abstract: Total variation was recently introduced in many different magnetic resonance imaging applications. The assumption of total variation is that images consist of areas, which are piecewise constant. However, in many practical magnetic resonance imaging situations, this assumption is not valid due to the inhomogeneities of the exciting B1 field and the receive coils. This work introduces the new concept of total generalized variation for magnetic resonance imaging, a new mathematical framework, which is a generalization of the total variation theory and which eliminates these restrictions. Two important applications are considered in this article, image denoising and image reconstruction from undersampled radial data sets with multiple coils. Apart from simulations, experimental results from in vivo measurements are presented where total generalized variation yielded improved image quality over conventional total variation in all cases.

557 citations


Journal ArticleDOI
TL;DR: Two related advancements to the diffusional kurtosis imaging estimation framework are presented to increase its robustness to noise, motion, and imaging artifacts and increase the efficiency and accuracy of the estimation of mean and radial kurtoses by applying exact closed‐form formulae.
Abstract: This article presents two related advancements to the diffusional kurtosis imaging estimation framework to increase its robustness to noise, motion, and imaging artifacts. The first advancement substantially improves the estimation of diffusion and kurtosis tensors parameterizing the diffusional kurtosis imaging model. Rather than utilizing conventional unconstrained least squares methods, the tensor estimation problem is formulated as linearly constrained linear least squares, where the constraints ensure physically and/or biologically plausible tensor estimates. The exact solution to the constrained problem is found via convex quadratic programming methods or, alternatively, an approximate solution is determined through a fast heuristic algorithm. The computationally more demanding quadratic programming-based method is more flexible, allowing for an arbitrary number of diffusion weightings and different gradient sets for each diffusion weighting. The heuristic algorithm is suitable for real-time settings such as on clinical scanners, where run time is crucial. The advantage offered by the proposed constrained algorithms is demonstrated using in vivo human brain images. The proposed constrained methods allow for shorter scan times and/or higher spatial resolution for a given fidelity of the diffusional kurtosis imaging parametric maps. The second advancement increases the efficiency and accuracy of the estimation of mean and radial kurtoses by applying exact closed-form formulae.

387 citations


Journal ArticleDOI
TL;DR: This study further improved the original MEDI method by sparsifying the edges in the quantitative susceptibility map that do not have a corresponding edge in the magnitude image, which shows a high degree of agreement between MEDI and calculation of susceptibility through multiple orientation sampling.
Abstract: Magnetic susceptibility varies among brain structures and provides insights into the chemical and molecular composition of brain tissues. However, the determination of an arbitrary susceptibility distribution from the measured MR signal phase is a challenging, ill-conditioned inverse problem. Although a previous method named calculation of susceptibility through multiple orientation sampling (COSMOS) has solved this inverse problem both theoretically and experimentally using multiple angle acquisitions, it is often impractical to carry out on human subjects. Recently, the feasibility of calculating the brain susceptibility distribution from a single-angle acquisition was demonstrated using morphology enabled dipole inversion (MEDI). In this study, we further improved the original MEDI method by sparsifying the edges in the quantitative susceptibility map that do not have a corresponding edge in the magnitude image. Quantitative susceptibility maps generated by the improved MEDI were compared qualitatively and quantitatively with those generated by calculation of susceptibility through multiple orientation sampling. The results show a high degree of agreement between MEDI and calculation of susceptibility through multiple orientation sampling, and the practicality of MEDI allows many potential clinical applications. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

343 citations


Journal ArticleDOI
TL;DR: A mathematical analysis is used to identify exactly in which tissue types the Tofts models may be applied, and shows that the TM is accurate if and only if the tissue is weakly vascularised (small blood volume).
Abstract: The Tofts model (TM) and extended Tofts model (ETM) have become a standard for the analysis of dynamic contrast-enhanced MRI. In this study, a mathematical analysis is used to identify exactly in which tissue types the Tofts models may be applied. The results show that the TM is accurate if and only if the tissue is weakly vascularised (small blood volume). The ETM is additionally accurate in highly perfused tissues (high blood flow). In tissues that are highly vascularised, or where tracer exchange is very fast or very slow, TM and ETM accurately fit the data but lead to a misinterpretation of the parameters. In tissue types with intermediate vascularity, perfusion and tracer exchange, neither model offers a good fit to the tissue concentrations. A good fit can be obtained with a measured input function by reducing the temporal resolution, but this does not improve the accuracy of the parameters. In conclusion, the Tofts models only produce reliable parameter values if the tissue is weakly vascularized (TM or ETM) or highly perfused (ETM). Without prior knowledge that at least one of these constraints is fulfilled, the physiological interpretation of the values produced by the Tofts models is unclear.

330 citations


Journal ArticleDOI
TL;DR: The new two‐point method promises to provide more freedom in the selection of protocol parameters and to reach higher scan efficiency and to enhance the fat suppression achieved with three‐point methods in this way, especially toward the edges of larger field of views.
Abstract: In this work, a new two-point method for water–fat imaging is described and explored. It generalizes existing two-point methods by eliminating some of the restrictions that these methods impose on the choice of echo times. Thus, the new two-point method promises to provide more freedom in the selection of protocol parameters and to reach higher scan efficiency. Its performance was studied theoretically and was evaluated experimentally in abdominal imaging with a multigradient-echo sequence. While depending on the choice of echo times, it is generally found to be favorable compared to existing two-point methods. Notably, water images with higher spatial resolution and better signal-to-noise ratio were attained with it in single breathholds at 3.0 T and 1.5 T, respectively. The use of more accurate spectral models of fat is shown to substantially reduce observed variations in the extent of fat suppression. The acquisition of in- and opposed-phase images is demonstrated to be replaceable by a synthesis from water and fat images. The new two-point method is finally also applied to autocalibrate a multidimensional eddy current correction and to enhance the fat suppression achieved with three-point methods in this way, especially toward the edges of larger field of views. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc.

313 citations


Journal ArticleDOI
TL;DR: TARQUIN has been shown to be an accurate and robust algorithm for the analysis of magnetic resonance spectroscopy data making it suitable for use in a clinical setting.
Abstract: Totally Automatic Robust Quantitation in NMR (TARQUIN), a new method for the fully automatic analysis of short echo time in vivo (1)H Magnetic resonance spectroscopy is presented. Analysis is performed in the time domain using non-negative least squares, and a new method for applying soft constraints to signal amplitudes is used to improve fitting stability. Initial point truncation and Hankel singular value decomposition water removal are used to reduce baseline interference. Three methods were used to test performance. First, metabolite concentrations from six healthy volunteers at 3 T were compared with LCModel™. Second, a Monte-Carlo simulation was performed and results were compared with LCModel™ to test the accuracy of the new method. Finally, the new algorithm was applied to 1956 spectra, acquired clinically at 1.5 T, to test robustness to noisy, abnormal, artifactual, and poorly shimmed spectra. Discrepancies of less than approximately 20% were found between the main metabolite concentrations determined by TARQUIN and LCModel™ from healthy volunteer data. The Monte-Carlo simulation revealed that errors in metabolite concentration estimates were comparable with LCModel™. TARQUIN analyses were also found to be robust to clinical data of variable quality. In conclusion, TARQUIN has been shown to be an accurate and robust algorithm for the analysis of magnetic resonance spectroscopy data making it suitable for use in a clinical setting.

300 citations


Journal ArticleDOI
TL;DR: This review highlights the most significant molecules investigated to date in preclinical cancer models, either in terms of their demonstrated metabolism in vivo or the biological processes that they can probe, and techniques to image these molecules are discussed.
Abstract: Dynamic nuclear polarization is an emerging technique for increasing the sensitivity of magnetic resonance imaging and spectroscopy, particularly for low-γ nuclei. The technique has been applied recently to a number of 13C-labeled cell metabolites in biological systems: the increase in signal-to-noise allows the spatial distribution of an injected molecule to be imaged as well as its metabolic product or products. This review highlights the most significant molecules investigated to date in preclinical cancer models, either in terms of their demonstrated metabolism in vivo or the biological processes that they can probe. In particular, label exchange between hyperpolarized 13C-labeled pyruvate and lactate, catalyzed by lactate dehydrogenase, has been shown to have a number of potential applications. Finally, techniques to image these molecules are also discussed as well as methods that may extend the lifetime of the hyperpolarized signal. Hyperpolarized magnetic resonance imaging and magnetic resonance spectroscopic imaging have shown great promise for the imaging of cancer in preclinical work, both for diagnosis and for monitoring therapy response. If the challenges in translating this technique to human imaging can be overcome, then it has the potential to significantly alter the management of cancer patients.

243 citations


Journal ArticleDOI
TL;DR: This work presents a novel design approach, regarding coil array elements as antennas, which is characterized by comparison with three other, more conventional designs using finite difference time domain (FDTD) simulations and B +1 measurements on a phantom.
Abstract: Ultra high field MR imaging (≥7 T) of deeply located targets in the body is facing some radiofrequency-field related challenges: interference patterns, reduced penetration depth, and higher Specific Absorbtion Ratio (SAR) levels. These can be alleviated by redesigning the elements of the transmit or transceive array. This is because at these high excitation field (B1) frequencies, conventional array element designs may have become suboptimal. In this work, an alternative design approach is presented, regarding coil array elements as antennas. Following this approach, the Poynting vector of the element should be oriented towards the imaging target region. The single-side adapted dipole antenna is a novel design that fulfills this requirement. The performance of this design as a transmit coil array element has been characterized by comparison with three other, more conventional designs using finite difference time domain (FDTD) simulations and B measurements on a phantom. Results show that the B level at the deeper regions is higher while maintaining relatively low SAR levels. Also, the B field distribution is more symmetrical and more uniform, promising better image homogeneity. Eight radiative antennas have been combined into a belt-like surface array for prostate imaging. T1-weighted (T1W) and T2-weighted (T2W) volunteer images are presented along with B measurements to demonstrate the improved efficiency. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.

227 citations


Journal ArticleDOI
TL;DR: A method is proposed to significantly reduce the complexity without restriction to particular radiofrequency excitations, by constructing several matrices that are sufficient to consider only these so‐called Virtual Observation Points for an adequate, conservative estimation of the maximum local SAR.
Abstract: The supervision of local specific absorption rate (SAR) in parallel transmission applications in MRI is crucial. One existing approach is to use electromagnetic simulations including human anatomical models and to precalculate the electric field distributions of each individual channel. These can be superposed later with respect to certain combined excitations under investigation, and the local SAR distribution can be evaluated. Local SAR maxima can be obtained by exhaustive search over all investigated subvolumes of the body model. Practical challenges arise for the adequate handling and comparing of precalculated field distributions as long as the expected combined radiofrequency excitations are still undetermined. Worst-case approximations for local SAR lead to significant radiofrequency pulse performance limitations. Optimizing local SAR in radiofrequency pulse design using constraints for each subvolume is impractical. A method is proposed to significantly reduce the complexity without restriction to particular radiofrequency excitations. By constructing several matrices, it becomes sufficient to consider only these so-called Virtual Observation Points for an adequate, conservative estimation of the maximum local SAR. The applied techniques involve concepts of vector optimization as well as semidefinite programming.

Journal ArticleDOI
TL;DR: The development of a hybrid technique that utilizes strengths of both methods is introduced and is shown capable of producing minimal artifact, high‐resolution images near total joint replacements in a clinical setting.
Abstract: The recently developed multi-acquisition with variable resonance image combination (MAVRIC) and slice-encoding metal artifact correction (SEMAC) techniques can significantly reduce image artifacts commonly encountered near embedded metal hardware. These artifact reductions are enabled by applying alternative spectral and spatial-encoding schemes to conventional spin-echo imaging techniques. Here, the MAVRIC and SEMAC concepts are connected and discussed. The development of a hybrid technique that utilizes strengths of both methods is then introduced. The presented technique is shown capable of producing minimal artifact, high-resolution images near total joint replacements in a clinical setting.

Journal ArticleDOI
TL;DR: In this paper, a recently developed approach, called electric properties tomography (EPT), is adapted for and applied to in vivo imaging, which derives the patient's electric conductivity and permittivity from the spatial sensitivity distributions of the applied radiofrequency coils.
Abstract: The electric properties of human tissue can potentially be used as an additional diagnostic parameter, e.g., in tumor diagnosis. In the framework of radiofrequency safety, the electric conductivity of tissue is needed to correctly estimate the local specific absorption rate distribution during MR measurements. In this study, a recently developed approach, called electric properties tomography (EPT) is adapted for and applied to in vivo imaging. It derives the patient's electric conductivity and permittivity from the spatial sensitivity distributions of the applied radiofrequency coils. In contrast to other methods to measure the patient's electric properties, EPT does not apply externally mounted electrodes, currents, or radiofrequency probes, which enhances the practicability of the approach. This work shows that conductivity distributions can be reconstructed from phase images and permittivity distributions can be reconstructed from magnitude images of the radiofrequency transmit field. Corresponding numerical simulations using finite-difference time-domain methods support the feasibility of this phase-based conductivity imaging and magnitude-based permittivity imaging. Using this approximation, three-dimensional in vivo conductivity and permittivity maps of the human brain are obtained in 5 and 13 min, respectively, which can be considered a step toward clinical feasibility for EPT. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The diffusion kurtosis imaging model provides a b‐value‐independent estimation of the widely used diffusion tensor parameters as demonstrated with diffusion‐weighted rat data, which was acquired with eight different b‐values, uniformly distributed in a range of [0,2800 sec/mm2].
Abstract: With diffusion tensor imaging, the diffusion of water molecules through brain structures is quantified by parameters, which are estimated assuming monoexponential diffusion-weighted signal attenuation. The estimated diffusion parameters, however, depend on the diffusion weighting strength, the b-value, which hampers the interpretation and comparison of various diffusion tensor imaging studies. In this study, a likelihood ratio test is used to show that the diffusion kurtosis imaging model provides a more accurate parameterization of both the Gaussian and non-Gaussian diffusion component compared with diffusion tensor imaging. As a result, the diffusion kurtosis imaging model provides a b-value-independent estimation of the widely used diffusion tensor parameters as demonstrated with diffusion-weighted rat data, which was acquired with eight different b-values, uniformly distributed in a range of [0,2800 sec/mm(2)]. In addition, the diffusion parameter values are significantly increased in comparison to the values estimated with the diffusion tensor imaging model in all major rat brain structures. As incorrectly assuming additive Gaussian noise on the diffusion-weighted data will result in an overestimated degree of non-Gaussian diffusion and a b-value-dependent underestimation of diffusivity measures, a Rician noise model was used in this study.

Journal ArticleDOI
TL;DR: The results suggest the potential of intravoxel incoherent motion vascular and cellular biomarkers for initial grading, progression monitoring, or treatment assessment of breast tumors.
Abstract: Diffusion-weighted imaging plays important roles in cancer diagnosis, monitoring, and treatment. Although most applications measure restricted diffusion by tumor cellularity, diffusion-weighted imaging is also sensitive to vascularity through the intravoxel incoherent motion effect. Hypervascularity can confound apparent diffusion coefficient measurements in breast cancer. We acquired multiple b-value diffusion-weighted imaging at 3 T in a cohort of breast cancer patients and performed biexponential intravoxel incoherent motion analysis to extract tissue diffusivity (Dt), perfusion fraction (fp), and pseudodiffusivity (Dp). Results indicated significant differences between normal fibroglandular tissue and malignant lesions in apparent diffusion coefficient mean (±standard deviation) values (2.44 ± 0.30 vs. 1.34 ± 0.39 μm2/msec, P < 0.01) and Dt (2.36 ± 0.38 vs. 1.15 ± 0.35 μm2/msec, P < 0.01). Lesion diffusion-weighted imaging signals demonstrated biexponential character in comparison to monoexponential normal tissue. There is some differentiation of lesion subtypes (invasive ductal carcinoma vs. other malignant lesions) with fp (10.5 ± 5.0% vs. 6.9 ± 2.9%, P = 0.06), but less so with Dt (1.14 ± 0.32 μm2/msec vs. 1.18 ± 0.52 μm2/msec, P = 0.88) and Dp (14.9 ± 11.4 μm2/msec vs. 16.1 ± 5.7 μm2/msec, P = 0.75). Comparison of intravoxel incoherent motion biomarkers with contrast enhancement suggests moderate correlations. These results suggest the potential of intravoxel incoherent motion vascular and cellular biomarkers for initial grading, progression monitoring, or treatment assessment of breast tumors. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The SNR implications of sweep excitation and of initial or periodical acquisition gaps required for transmit‐receive switching are investigated and it was found by simulations and experiments that, whereas equivalent in terms of T2 sensitivity, the two techniques differ in SNR performance.
Abstract: Zero echo time can be obtained in MRI by performing radiofrequency (RF) excitation as well as acquisition in the presence of a constant gradient applied for purely frequency-encoded, radial centre-out k-space encoding. In this approach, the spatially nonselective excitation must uniformly cover the full frequency bandwidth spanned by the readout gradient. This can be accomplished either by short, hard RF pulses or by pulses with a frequency sweep as used in the SWIFT (Sweep imaging with Fourier transform) method for improved performance at limited RF amplitudes. In this work, the two options are compared with respect to T2 sensitivity, signal-to-noise ratio (SNR), and SNR efficiency. In particular, the SNR implications of sweep excitation and of initial or periodical acquisition gaps required for transmit-receive switching are investigated. It was found by simulations and experiments that, whereas equivalent in terms of T2 sensitivity, the two techniques differ in SNR performance. With ideal, ungapped simultaneous excitation and acquisition, the sweep approach would yield higher SNR throughout due to larger feasible flip angles. However, acquisition gapping is found to take a significant SNR toll related to a reduced acquisition duty cycle, rendering hard pulse excitation superior for sufficient RF amplitude and also in the short-T2 limit. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Seed‐based FC measures are shown to be the sum of independent component analysis‐derived within network connectivities and between network connectivity.
Abstract: Brain functional connectivity (FC) refers to inter-regional synchrony of low frequency fluctuations in blood oxygenation level dependent functional magnetic resonance imaging. FC has been evaluated both during task performance and in the "resting" state, yielding reports of FC differences correlated with behavior and diagnosis. Two methodologies are widely used for evaluating FC from blood oxygenation level dependent functional magnetic resonance imaging data: Temporal correlation with a specified seed voxel or small region of interest; and spatial independent component analysis. While results from seed-based and independent component analysis methodologies are generally similar, they are conceptually different. This study is intended to elucidate and illustrate, qualitatively and quantitatively, the relationship between seed and independent component analysis derived measures of FC. Seed-based FC measures are shown to be the sum of independent component analysis-derived within network connectivities and between network connectivities. We present a simple simulation and an experiment on visuomotor activity that highlight this relationship between the two methods.

Journal ArticleDOI
TL;DR: A ratiometric method for pH assessment has been set up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances, which allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5–7.4 range.
Abstract: Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition.

Journal ArticleDOI
TL;DR: This work introduces a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms, and demonstrates that using this hybrid method, 0–100% fat‐fraction can be estimated with improved accuracy at lowfat‐fractions.
Abstract: Multipoint water-fat separation techniques rely on different water-fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water-fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through "magnitude-based" methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water-fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water-fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0-100% fat-fraction can be estimated with improved accuracy at low fat-fractions.

Journal ArticleDOI
TL;DR: This work has developed a time‐resolved 3D MR spectroscopic imaging method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization.
Abstract: Hyperpolarized 13C MR spectroscopic imaging can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MR spectroscopic imaging method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-13C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MR spectroscopic imaging with sampling incoherency in four (time, frequency, and two spatial) dimensions. The reconstruction was also tailored to dynamic MR spectroscopic imaging by applying a temporal wavelet sparsifying transform to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-13C]-pyruvate substrate given its higher concentration than its metabolic products ([1-13C]-lactate and [1-13C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution. Magn Reson Med, 2011. © 2010 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: On‐resonance SL is most sensitive to chemical exchanges in the intermediate‐exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale and the asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power.
Abstract: Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

Journal ArticleDOI
TL;DR: A high correlation between metabolite concentrations obtained by these two proton 1H MRS techniques indicated the sensitivity to detect intersubject variation in metabolite levels.
Abstract: Short echo time (TE) 1H MR spectroscopy techniques are critical for extending the neurochemical information beyond NAA, creatine and choline as they facilitate the detection of brain metabolites with J-coupled spin systems, such as glutamate and glutamine. Short TE minimizes signal loss due to J-evolution and T2 relaxation, which is especially detrimental at high fields in the human brain where T2 values are relatively short (1,2). Neurochemical profiles have so far been mostly quantified using localization with the ultra-short TE stimulated-echo acquisition mode (STEAM) sequence (3–5), because T2 relaxation and J-evolution are negligible at ultra-short TE making metabolite quantification straightforward. However, the STEAM sequence utilizes only half of the available Mz magnetization, which limits the achievable spatial resolution of MRS that permits reliable metabolite quantification. Using the STEAM sequence to acquire spectra from small volumes in deep brain regions is even more difficult because the intrinsic sensitivity of volume RF coils is substantially lower than surface coils. While reasonably short TEs can be achieved with point resolved spectroscopy (PRESS) sequences that also utilize the full available Mz magnetization (6,7), the limited bandwidth of 180° refocusing pulses in these sequences may result in substantial chemical shift displacement errors at high fields. Recently, a new localization pulse sequence termed SPECIAL (spin echo full intensity acquired localization) was introduced (8), which enables full signal intensity acquisition at ultra-short TEs. The feasibility of obtaining neurochemical profiles with the SPECIAL sequence was successfully demonstrated in the rat (9) and human (10) brain. However, localization with this hybrid ISIS/spin echo sequence relies on an add-subtract scheme. Single-shot methods simplify frequency and phase correction of individual FIDs (11) and are therefore desirable for localized spectroscopy, especially in clinical populations where motion artifacts are frequently encountered (12). The localization by adiabatic selective refocusing (LASER) sequence (13) is a single-shot technique and also enables localization with full signal intensity, but requires relatively longer TEs because of 3 pairs of adiabatic 180° pulses. The TE of the LASER sequence can be shortened by replacing one of the 180° pairs by a slice selective excitation pulse in the so-called semi-LASER sequence (14), which enables TEs as short as 30 ms with a surface coil and 50 ms with a volume coil at 7T (15). The LASER sequence has the advantage that apparent T2 relaxation times of metabolites are longer than those measured with conventional Hahn spin echo sequences (1), resulting in less signal attenuation at longer TEs. In addition, J-evolution is partially suppressed in LASER due to the series of 180° pulses, also favoring signal retention. Further shortening of the TE of semi-LASER is desirable, especially for volume RF coils as the limited B1(max) of these coils require longer RF pulses. In addition, neurochemical profiles obtained at the longer TEs of semi-LASER relative to STEAM need to be validated in multiple brain regions such that the sequence can be utilized for neurochemical profiling in clinical populations. Specifically, the acceptability of approximations, such as neglecting a correction for T2 relaxation, needs to be investigated for absolute metabolite quantification. The aims of this study were 1) to design and optimize a single-shot, semi-adiabatic localization method with full signal intensity, short TE and minimal chemical shift displacement error and 2) to validate neurochemical profiling using this new sequence in multiple, clinically relevant brain regions in humans. To achieve these goals, we modified the semi-LASER sequence to minimize TE and then tested its performance at 4T with a surface and a volume RF coil. To validate neurochemical profiles obtained with the newly developed semi-LASER sequence, we compared neurochemical profiles quantified from semi-LASER and STEAM spectra acquired from the cerebellum and brainstem, brain regions affected in various movement disorders (16).

Journal ArticleDOI
TL;DR: This study shows that 129Xe ADC MRI is clinically feasible, sufficiently sensitive to distinguish HV from subjects with emphysema, and detects age‐ and posture‐dependent changes.
Abstract: Xe apparent diffusion coefficient (ADC) MRI offers an alternative to 3 He ADC MRI, given its greater availability and lower cost. To demonstrate the feasibility of HP 129 Xe ADC MRI, we present results from healthy volunteers (HV), chronic obstructive pulmonary disease (COPD) subjects, and age-matched healthy controls (AMC). The mean parenchymal ADC was 0.036±0.003 cm 2 /s for HV, 0.043±0.006 cm 2 /s for AMC, and 0.056±0.008 cm 2 /s for COPD subjects with emphysema. In healthy individuals, but not the COPD group, ADC decreased significantly in the anterior-posterior direction by ~22% (p = 0.006, AMC; 0.0059, HV), likely due to gravity-induced tissue compression. The COPD group exhibited a significantly larger superior-inferior ADC reduction (~28%) than the healthy groups (~24%) (p = 0.00018 HV; p = 3.45×10 -5 AMC), consistent with smoking-related tissue destruction in the superior lung. Superior-inferior gradients in healthy subjects may result from regional differences in xenon concentration. ADC was significantly correlated with pulmonary function tests (FEV1, r=-0.77, p=0.0002; FEV1/FVC, r=-0.78, p=0.0002; DLCO/VA, r=-0.77, p=0.0002), and in healthy groups, increased with age by 0.0002 cm 2 /s/yr (r=0.56, p=0.02). This study shows 129 Xe ADC MRI is clinically feasible, sufficiently sensitive to distinguish HV from subjects with emphysema, and detects age and posture-dependent changes.

Journal ArticleDOI
TL;DR: It is shown here that hyperpolarized [1‐13C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with 18fluoro‐2‐deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue.
Abstract: We show here that hyperpolarized [1-(13) C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with (18) fluoro-2-deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue. (13) C chemical shift images acquired following intravenous injection of hyperpolarized [1-(13) C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but comparatively low levels in surrounding brain.Labeled pyruvate was observed at high levels in blood vessels above the brain and from other major vessels elsewhere but was detected at only low levels in tumor and brain.The ratio of hyperpolarized (13) C label in tumor lactate compared to the maximum pyruvate signal in the blood vessels was decreased from 0.38 ± 0.16 to 0.23 ± 0.13, (a reduction of 34%) by 72 h following whole brain irradiation with 15 Gy.

Journal ArticleDOI
TL;DR: An improved image reconstruction method from undersampled k‐space data, low‐dimensional‐structure self‐learning and thresholding (LOST), which utilizes the structure from the underlying image to improve image reconstruction for accelerated coronary MRI acquisitions is presented.
Abstract: An improved image reconstruction method from undersampled k-space data, low-dimensional-structure self-learning and thresholding (LOST), which utilizes the structure from the underlying image is presented. A low-resolution image from the fully sampled k-space center is reconstructed to learn image patches of similar anatomical characteristics. These patches are arranged into "similarity clusters," which are subsequently processed for dealiasing and artifact removal, using underlying low-dimensional properties. The efficacy of the proposed method in scan time reduction was assessed in a pilot coronary MRI study. Initially, in a retrospective study on 10 healthy adult subjects, we evaluated retrospective undersampling and reconstruction using LOST, wavelet-based l(1)-norm minimization, and total variation compressed sensing. Quantitative measures of vessel sharpness and mean square error, and qualitative image scores were used to compare reconstruction for rates of 2, 3, and 4. Subsequently, in a prospective study, coronary MRI data were acquired using these rates, and LOST-reconstructed images were compared with an accelerated data acquisition using uniform undersampling and sensitivity encoding reconstruction. Subjective image quality and sharpness data indicate that LOST outperforms the alternative techniques for all rates. The prospective LOST yields images with superior quality compared with sensitivity encoding or l(1)-minimization compressed sensing. The proposed LOST technique greatly improves image reconstruction for accelerated coronary MRI acquisitions.

Journal ArticleDOI
TL;DR: The results suggest that the saturation power of 2 μT is ideal for APT imaging of these two pathologies at 3 T with the existing clinical hardware.
Abstract: Amide proton transfer (APT) imaging is capable of detecting mobile cellular proteins and peptides in tumor and monitoring pH effects in stroke, through the saturation transfer between irradiated amide protons and water protons. In this work, four healthy subjects, eight brain tumor patients (four with high-grade glioma, one with lung cancer metastasis, and three with meningioma), and four stroke patients (average 4.3 ± 2.5 days after the onset of the stroke) were scanned at 3 T, using different radiofrequency saturation powers. The APT effect was quantified using the magnetization transfer ratio (MTR) asymmetry at 3.5 ppm with respect to the water resonance. At a saturation power of 2 μT, the measured APT-MRI signal of the normal brain tissue was almost zero, due to the contamination of the negative conventional magnetization transfer ratio asymmetry. This irradiation power caused an optimal hyperintense APT-MRI signal in the tumor and an optimal hypointense signal in the stroke, compared to the normal brain tissue. The results suggest that the saturation power of 2 μT is ideal for APT imaging of these two pathologies at 3 T with the existing clinical hardware.

Journal ArticleDOI
TL;DR: A novel method to accelerate diffusion spectrum imaging using compressed sensing can be applied to either reduce acquisition time of diffusion spectrum Imaging acquisition without losing critical information or to improve the resolution in diffusion space without increasing scan time.
Abstract: We developed a novel method to accelerate diffusion spectrum imaging using compressed sensing. The method can be applied to either reduce acquisition time of diffusion spectrum imaging acquisition without losing critical information or to improve the resolution in diffusion space without increasing scan time. Unlike parallel imaging, compressed sensing can be applied to reconstruct a sub-Nyquist sampled dataset in domains other than the spatial one. Simulations of fiber crossings in 2D and 3D were performed to systematically evaluate the effect of compressed sensing reconstruction with different types of undersampling patterns (random, gaussian, Poisson disk) and different acceleration factors on radial and axial diffusion information. Experiments in brains of healthy volunteers were performed, where diffusion space was undersampled with different sampling patterns and reconstructed using compressed sensing. Essential information on diffusion properties, such as orientation distribution function, diffusion coefficient, and kurtosis is preserved up to an acceleration factor of R = 4. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem and demonstrates that the resulting geometric consistency permits straightforward tensor analysis without coregistration.
Abstract: Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Quantitative plaque morphology measurements and signal‐to‐noise ratio measures show that 3D‐MERGE provides good blood suppression and comparable plaque burden measurements to existing MRI protocols, and is a promising new tool for fast and accurate plaque burden assessment in patients with atherosclerotic plaque.
Abstract: Black-blood MRI is a promising tool for carotid atherosclerotic plaque burden assessment and compositional analysis. However, current sequences are limited by large slice thickness. Accuracy of measurement can be improved by moving to isotropic imaging but can be challenging for patient compliance due to long scan times. We present a fast isotropic high spatial resolution (0.7×0.7×0.7 mm3) three-dimensional black-blood sequence (3D-MERGE) covering the entire cervical carotid arteries within 2 min thus ensuring patient compliance and diagnostic image quality. The sequence is optimized for vessel wall imaging of the carotid bifurcation based on its signal properties. The optimized sequence is validated on patients with significant carotid plaque. Quantitative plaque morphology measurements and signal-to-noise ratio measures show that 3D-MERGE provides good blood suppression and comparable plaque burden measurements to existing MRI protocols. 3D-MERGE is a promising new tool for fast and accurate plaque burden assessment in patients with atherosclerotic plaque.

Journal ArticleDOI
TL;DR: An innovative 3D radial trajectory based on a natural spiral phyllotaxis pattern is introduced, which features optimized interleaving properties that facilitate simple density compensation and high reduction of eddy current artifacts and overall improvement in image quality.
Abstract: While radial 3D acquisition has been discussed in cardiac MRI for its excellent results with radial undersampling, the self-navigating properties of the trajectory need yet to be exploited. Hence, the radial trajectory has to be interleaved such that the first readout of every interleave starts at the top of the sphere, which represents the shell covering all readouts. If this is done sub-optimally, the image quality might be degraded by eddy current effects, and advanced density compensation is needed. In this work, an innovative 3D radial trajectory based on a natural spiral phyllotaxis pattern is introduced, which features optimized interleaving properties: (1) overall uniform readout distribution is preserved, which facilitates simple density compensation, and (2) if the number of interleaves is a Fibonacci number, the interleaves self-arrange such that eddy current effects are significantly reduced. These features were theoretically assessed in comparison with two variants of an interleaved Archimedean spiral pattern. Furthermore, the novel pattern was compared with one of the Archimedean spiral patterns, with identical density compensation, in phantom experiments. Navigator-gated whole-heart coronary imaging was performed in six healthy volunteers. High reduction of eddy current artifacts and overall improvement in image quality were achieved with the novel trajectory.