scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Biology of the Cell in 2019"


Journal ArticleDOI
TL;DR: It is believed that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources.
Abstract: Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.

139 citations


Journal Article
TL;DR: Increased syndecan-2 expression appears to be a critical for colon carcinoma cell behavior, and syndecin-2 regulates tumorigenic activity through regulation of adhesion and proliferation in Colon carcinoma cells.
Abstract: Syndecan-2 is a transmembrane heparan sulfate proteoglycan whose function at the cell surface is unclear. In this study, we examined the function of syndecan-2 in colon cancer cell lines. In several colon cancer cell lines, syndecan-2 was highly expressed compared with normal cell lines. In contrast, syndecan-1 and -4 were decreased. Cell biological studies using the extracellular domain of recombinant syndecan-2 (2E) or spreading assay with syndecan-2 antibody-coated plates showed that syndecan-2 mediated adhesion and cytoskeletal organization of colon cancer cells. This interaction was critical for the proliferation of colon carcinoma cells. Blocking with 2E or antisense syndecan-2 cDNA induced G0/G1 cell cycle arrest with concomitantly increased expression of p21, p27, and p53. Furthermore, blocking of syndecan-2 through antisense syndecan-2 cDNA significantly reduced tumorigenic activity in colon carcinoma cells. Therefore, increased syndecan-2 expression appears to be a critical for colon carcinoma cell behavior, and syndecan-2 regulates tumorigenic activity through regulation of adhesion and proliferation in colon carcinoma cells.

135 citations


Journal ArticleDOI
TL;DR: The results reveal the novel prosurvival response to PARP activation through a change in cellular metabolism and demonstrate how unique applications of advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution in a live cell.
Abstract: DNA damage signaling is critical for the maintenance of genome integrity and cell fate decision. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor rapidly activated in a damage dose- and complexity-dependent manner playing a critical role in the initial chromatin organization and DNA repair pathway choice at damage sites. However, our understanding of a cell-wide consequence of its activation in damaged cells is still limited. Using the phasor approach to fluorescence lifetime imaging microscopy and fluorescence-based biosensors in combination with laser microirradiation, we found a rapid cell-wide increase of the bound NADH fraction in response to nuclear DNA damage, which is triggered by PARP-dependent NAD+ depletion. This change is linked to the metabolic balance shift to oxidative phosphorylation (oxphos) over glycolysis. Inhibition of oxphos, but not glycolysis, resulted in parthanatos due to rapid PARP-dependent ATP deprivation, indicating that oxphos becomes critical for damaged cell survival. The results reveal the novel prosurvival response to PARP activation through a change in cellular metabolism and demonstrate how unique applications of advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution in a live cell.

72 citations


Journal ArticleDOI
TL;DR: It is reported that increased extracellular multivalent cations lead to increased heterochromatin levels through activation of mechanosensitive ion channels (MSCs) and consequent changes to histone modification state and chromatin-based nuclear rigidity, which protects nuclear morphology and function.
Abstract: The nucleus houses, organizes, and protects chromatin to ensure genome integrity and proper gene expression, but how the nucleus adapts mechanically to changes in the extracellular environment is poorly understood. Recent studies have revealed that extracellular physical stresses induce chromatin compaction via mechanotransductive processes. We report that increased extracellular multivalent cations lead to increased heterochromatin levels through activation of mechanosensitive ion channels (MSCs), without large-scale cell stretching. In cells with perturbed chromatin or lamins, this increase in heterochromatin suppresses nuclear blebbing associated with nuclear rupture and DNA damage. Through micromanipulation force measurements, we show that this increase in heterochromatin increases chromatin-based nuclear rigidity, which protects nuclear morphology and function. In addition, transduction of elevated extracellular cations rescues nuclear morphology in model and patient cells of human diseases, including progeria and the breast cancer model cell line MDA-MB-231. We conclude that nuclear mechanics, morphology, and function can be modulated by cell sensing of the extracellular environment through MSCs and consequent changes to histone modification state and chromatin-based nuclear rigidity.

68 citations


Journal ArticleDOI
TL;DR: A task force suggests ways to ease the entry for new researchers into the field and how to facilitate broader use of this new model organism within the research community, including guidelines for reproducibility, culturing, sharing of patient materials, patient consent, training, and communication with the public.
Abstract: Organoids derived from stem cells or tissues in culture can develop into structures that resemble the in vivo anatomy and physiology of intact organs. Human organoid cultures provide the potential to study human development and model disease processes with the same scrutiny and depth of analysis customary for research with nonhuman model organisms. Resembling the complexity of the actual tissue or organ, patient-derived human organoid studies may accelerate medical research, creating new opportunities for tissue engineering and regenerative medicine, generating knowledge and tools for preclinical studies, including drug development and testing. Biologists are drawn to this system as a new "model organism" to study complex disease phenotypes and genetic variability among individuals using patient-derived tissues. The American Society for Cell Biology convened a task force to report on the potential, challenges, and limitations for human organoid research. The task force suggests ways to ease the entry for new researchers into the field and how to facilitate broader use of this new model organism within the research community. This includes guidelines for reproducibility, culturing, sharing of patient materials, patient consent, training, and communication with the public.

67 citations


Journal ArticleDOI
TL;DR: The implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution are discussed, and a pressure–tension model for nuclear shape is discussed, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.
Abstract: Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell inter...

54 citations


Journal ArticleDOI
TL;DR: Using a Giardia nuclear localization signal to target dCas9 to both nuclei, efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes inGiardia is developed and a stable dual knockdown strain with both flagellar length and disk defects is created.
Abstract: Giardia lamblia is a binucleate protistan parasite causing significant diarrheal disease worldwide. An inability to target Cas9 to both nuclei, combined with the lack of nonhomologous end joining and markers for positive selection, has stalled the adaptation of CRISPR/Cas9-mediated genetic tools for this widespread parasite. CRISPR interference (CRISPRi) is a modification of the CRISPR/Cas9 system that directs catalytically inactive Cas9 (dCas9) to target loci for stable transcriptional repression. Using a Giardia nuclear localization signal to target dCas9 to both nuclei, we developed efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes in Giardia. Specifically, CRISPRi knockdown of kinesin-2a and kinesin-13 causes severe flagellar length defects that mirror defects with morpholino knockdown. Knockdown of the ventral disk MBP protein also causes severe structural defects that are highly prevalent and persist in the population more than 5 d longer than defects associated with transient morpholino-based knockdown. By expressing two guide RNAs in tandem to simultaneously knock down kinesin-13 and MBP, we created a stable dual knockdown strain with both flagellar length and disk defects. The efficiency and simplicity of CRISPRi in polyploid Giardia allows rapid evaluation of knockdown phenotypes and highlights the utility of CRISPRi for emerging model systems.

49 citations


Journal ArticleDOI
TL;DR: Measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindle suggest that central- SpindleMicrotubules and chromosomes are strongly coupled in anaphase and provide new dynamical, functional, and ultrastructural characterizations.
Abstract: Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.

48 citations


Journal ArticleDOI
TL;DR: It is found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria, which provides a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.
Abstract: Despite the proliferation of proteins that can form filaments or phase-separated condensates, it remains unclear how this behavior is distributed over biological networks. We have found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria. Additionally, the ability to assemble is enriched at branch points on several metabolic pathways. The assembly of enzymes at the first branch point in de novo purine biosynthesis is coordinated, hierarchical, and based on their position within the pathway, while the enzymes at the second branch point are recruited to RNA stress granules. Consistent with distinct classes of structures being deployed at different control points in a pathway, we find that the first enzyme in the pathway, PRPP synthetase, forms evolutionarily conserved filaments that are sequestered in the nucleus in higher eukaryotes. These findings provide a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.

47 citations


Journal ArticleDOI
TL;DR: A direct force probe is used to locally deform the nucleus by applying a transient tensile stress to the nuclear membrane, suggesting that transient nuclear deformations typically caused by local tensile stresses are sufficient to cause nuclear membrane rupture.
Abstract: Cancer cell migration through narrow constrictions generates compressive stresses on the nucleus that deform it and cause rupture of nuclear membranes. Nuclear membrane rupture allows uncontrolled exchange between nuclear and cytoplasmic contents. Local tensile stresses can also cause nuclear deformations, but whether such deformations are accompanied by nuclear membrane rupture is unknown. Here we used a direct force probe to locally deform the nucleus by applying a transient tensile stress to the nuclear membrane. We found that a transient (∼0.2 s) deformation (∼1% projected area strain) in normal mammary epithelial cells (MCF-10A cells) was sufficient to cause rupture of the nuclear membrane. Nuclear membrane rupture scaled with the magnitude of nuclear deformation and the magnitude of applied tensile stress. Comparison of diffusive fluxes of nuclear probes between wild-type and lamin-depleted MCF-10A cells revealed that lamin A/C, but not lamin B2, protects the nuclear membranes against rupture from tensile stress. Our results suggest that transient nuclear deformations typically caused by local tensile stresses are sufficient to cause nuclear membrane rupture.

46 citations


Journal ArticleDOI
TL;DR: Canoe and Polychaetoid as discussed by the authors have been found to help cells maintain junctional-cytoskeletal linkage when challenged by the junctional remodeling inherent in mitosis, cell intercalation, and neuroblast invagination or by forces generated by the actomyosin cable at the leading edge.
Abstract: During morphogenesis, cells must change shape and move without disrupting tissue integrity. This requires cell-cell junctions to allow dynamic remodeling while resisting forces generated by the actomyosin cytoskeleton. Multiple proteins play roles in junctional-cytoskeletal linkage, but the mechanisms by which they act remain unclear. Drosophila Canoe maintains adherens junction-cytoskeletal linkage during gastrulation. Canoe's mammalian homologue Afadin plays similar roles in cultured cells, working in parallel with ZO-1 proteins, particularly at multicellular junctions. We take these insights back to the fly embryo, exploring how cells maintain epithelial integrity when challenged by adherens junction remodeling during germband extension and dorsal closure. We found that Canoe helps cells maintain junctional-cytoskeletal linkage when challenged by the junctional remodeling inherent in mitosis, cell intercalation, and neuroblast invagination or by forces generated by the actomyosin cable at the leading edge. However, even in the absence of Canoe, many cells retain epithelial integrity. This is explained by a parallel role played by the ZO-1 homologue Polychaetoid. In embryos lacking both Canoe and Polychaetoid, cell junctions fail early, with multicellular junctions especially sensitive, leading to widespread loss of epithelial integrity. Our data suggest that Canoe and Polychaetoid stabilize Bazooka/Par3 at cell-cell junctions, helping maintain balanced apical contractility and tissue integrity.

Journal ArticleDOI
TL;DR: Reconstituted LC3 lipidation with recombinant PI3KC3-C1, -C2, or various mutant derivatives added to extracts derived from a CRISPR/Cas9-generated ATG14-knockout cell line reveals the nuanced role of the ATG 14 ALPS in membrane curvature sensing, suggesting that the ALPS has additional roles in supporting LC3lipidation.
Abstract: Autophagy is a conserved eukaryotic pathway critical for cellular adaptation to changes in nutrition levels and stress. The class III phosphatidylinositol (PI)3-kinase complexes I and II (PI3KC3-C1 and -C2) are essential for autophagosome initiation and maturation, respectively, from highly curved vesicles. We used a cell-free reaction that reproduces a key autophagy initiation step, LC3 lipidation, as a biochemical readout to probe the role of autophagy-related gene (ATG)14, a PI3KC3-C1-specific subunit implicated in targeting the complex to autophagy initiation sites. We reconstituted LC3 lipidation with recombinant PI3KC3-C1, -C2, or various mutant derivatives added to extracts derived from a CRISPR/Cas9-generated ATG14-knockout cell line. Both complexes C1 and C2 require the C-terminal helix of VPS34 for activity on highly curved membranes. However, only complex C1 supports LC3 lipidation through the curvature-targeting amphipathic lipid packing sensor (ALPS) motif of ATG14. Furthermore, the ALPS motif and VPS34 catalytic activity are required for downstream recruitment of WD-repeat domain phosphoinositide-interacting protein (WIPI)2, a protein that binds phosphatidylinositol 3-phosphate and its product phosphatidylinositol 3, 5-bisphosphate, and a WIPI-binding protein, ATG2A, but do not affect membrane association of ATG3 and ATG16L1, enzymes contributing directly to LC3 lipidation. These data reveal the nuanced role of the ATG14 ALPS in membrane curvature sensing, suggesting that the ALPS has additional roles in supporting LC3 lipidation.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on proven strategies that departments and research institutions can develop to increase equity in faculty hiring and promotion to address the lack of racial and gender diversity among their faculty.
Abstract: Through targeted recruitment and interventions to support their success during training, the fraction of trainees (graduate students and postdoctoral fellows) in academic science from historically underrepresented groups has steadily increased. However, this trend has not translated to a concomitant increase in the number of faculty from these underrepresented groups. Here, I focus on proven strategies that departments and research institutions can develop to increase equity in faculty hiring and promotion to address the lack of racial and gender diversity among their faculty.

Journal ArticleDOI
TL;DR: The results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K–AKT–mTOR pathway signaling.
Abstract: The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial-mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K-AKT-mTOR pathway signaling.

Journal ArticleDOI
TL;DR: It is discovered that Ena’s enhanced processivity on trailing barbed ends is specific to fascin bundles, with no enhancement on fimbrin or α-actinin bundles.
Abstract: Ena/VASP tetramers are processive actin elongation factors that localize to diverse F-actin networks composed of filaments bundled by different cross-linking proteins, such as filopodia (fascin), lamellipodia (fimbrin), and stress fibers (α-actinin). Previously, we found that Ena takes approximately threefold longer processive runs on trailing barbed ends of fascin-bundled F-actin. Here, we used single-molecule TIRFM (total internal reflection fluorescence microscopy) and developed a kinetic model to further dissect Ena/VASP's processive mechanism on bundled filaments. We discovered that Ena's enhanced processivity on trailing barbed ends is specific to fascin bundles, with no enhancement on fimbrin or α-actinin bundles. Notably, Ena/VASP's processive run length increases with the number of both fascin-bundled filaments and Ena "arms," revealing avidity facilitates enhanced processivity. Consistently, Ena tetramers form more filopodia than mutant dimer and trimers in Drosophila culture cells. Moreover, enhanced processivity on trailing barbed ends of fascin-bundled filaments is an evolutionarily conserved property of Ena/VASP homologues, including human VASP and Caenorhabditis elegans UNC-34. These results demonstrate that Ena tetramers are tailored for enhanced processivity on fascin bundles and that avidity of multiple arms associating with multiple filaments is critical for this process. Furthermore, we discovered a novel regulatory process whereby bundle size and bundling protein specificity control activities of a processive assembly factor.

Journal ArticleDOI
TL;DR: It is demonstrated that distinct and dynamic pools of myosin II regulate protrusion dynamics within and between collectively migrating cells and a new model for the role of protrusions in collective direction sensing in vivo is suggested.
Abstract: Collective cell migration is emerging as a major driver of embryonic development, organogenesis, tissue homeostasis, and tumor dissemination. In contrast to individually migrating cells, collectively migrating cells maintain cell-cell adhesions and coordinate direction-sensing as they move. While nonmuscle myosin II has been studied extensively in the context of cells migrating individually in vitro, its roles in cells migrating collectively in three-dimensional, native environments are not fully understood. Here we use genetics, Airyscan microscopy, live imaging, optogenetics, and Forster resonance energy transfer to probe the localization, dynamics, and functions of myosin II in migrating border cells of the Drosophila ovary. We find that myosin accumulates transiently at the base of protrusions, where it functions to retract them. E-cadherin and myosin colocalize at border cell-border cell contacts and cooperate to transmit directional information. A phosphomimetic form of myosin is sufficient to convert border cells to a round morphology and blebbing migration mode. Together these studies demonstrate that distinct and dynamic pools of myosin II regulate protrusion dynamics within and between collectively migrating cells and suggest a new model for the role of protrusions in collective direction sensing in vivo.

Journal ArticleDOI
TL;DR: It is shown that clathrin plaques and surrounding branched actin filaments form microdomains that anchor a three-dimensional desmin intermediate filament (IF) web, which in turn anchors IFs, both essential for striated muscle formation and function.
Abstract: Clathrin plaques are stable features of the plasma membrane observed in several cell types. They are abundant in muscle, where they localize at costameres that link the contractile apparatus to the sarcolemma and connect the sarcolemma to the basal lamina. Here, we show that clathrin plaques and surrounding branched actin filaments form microdomains that anchor a three-dimensional desmin intermediate filament (IF) web. Depletion of clathrin plaque and branched actin components causes accumulation of desmin tangles in the cytoplasm. We show that dynamin 2, whose mutations cause centronuclear myopathy (CNM), regulates both clathrin plaques and surrounding branched actin filaments, while CNM-causing mutations lead to desmin disorganization in a CNM mouse model and patient biopsies. Our results suggest a novel paradigm in cell biology, wherein clathrin plaques act as platforms capable of recruiting branched cortical actin, which in turn anchors IFs, both essential for striated muscle formation and function.

Journal ArticleDOI
TL;DR: It is suggested that dual amphipathic helical regions mediate LD targeting and underpin the hierarchical binding of Plin1–3 to LDs.
Abstract: Lipid droplets (LDs) in all eukaryotic cells are coated with at least one of the perilipin (Plin) family of proteins. They all regulate key intracellular lipases but do so to significantly different extents. Where more than one Plin is expressed in a cell, they associate with LDs in a hierarchical manner. In vivo, this means that lipid flux control in a particular cell or tissue type is heavily influenced by the specific Plins present on its LDs. Despite their early discovery, exactly how Plins target LDs and why they displace each other in a "hierarchical" manner remains unclear. They all share an amino-terminal 11-mer repeat (11mr) amphipathic region suggested to be involved in LD targeting. Here, we show that, in vivo, this domain functions as a primary highly reversible LD targeting motif in Plin1-3, and, in vitro, we document reversible and competitive binding between a wild-type purified Plin1 11mr peptide and a mutant with reduced binding affinity to both "naked" and phospholipid-coated oil-water interfaces. We also present data suggesting that a second carboxy-terminal 4-helix bundle domain stabilizes LD binding in Plin1 more effectively than in Plin2, whereas it weakens binding in Plin3. These findings suggest that dual amphipathic helical regions mediate LD targeting and underpin the hierarchical binding of Plin1-3 to LDs.

Journal ArticleDOI
TL;DR: A subpopulation of embryonic cortical neurons that transiently express nestin in their axons is shown, proposing that nestin functions in immature neurons to modulate cdk5 downstream of the Sema3a response, which could allow temporal and/or spatial modulation of a neuron’s response to Sema 3a, particularly during early axon guidance.
Abstract: Correct wiring in the neocortex requires that responses to an individual guidance cue vary among neurons in the same location, and within the same neuron over time. Nestin is an atypical intermediate filament expressed strongly in neural progenitors and is thus used widely as a progenitor marker. Here we show a subpopulation of embryonic cortical neurons that transiently express nestin in their axons. Nestin expression is thus not restricted to neural progenitors, but persists for 2-3 d at lower levels in newborn neurons. We found that nestin-expressing neurons have smaller growth cones, suggesting that nestin affects cytoskeletal dynamics. Nestin, unlike other intermediate filament subtypes, regulates cdk5 kinase by binding the cdk5 activator p35. Cdk5 activity is induced by the repulsive guidance cue Semaphorin3a (Sema3a), leading to axonal growth cone collapse in vitro. Therefore, we tested whether nestin-expressing neurons showed altered responses to Sema3a. We find that nestin-expressing newborn neurons are more sensitive to Sema3a in a roscovitine-sensitive manner, whereas nestin knockdown results in lowered sensitivity to Sema3a. We propose that nestin functions in immature neurons to modulate cdk5 downstream of the Sema3a response. Thus, the transient expression of nestin could allow temporal and/or spatial modulation of a neuron's response to Sema3a, particularly during early axon guidance.

Journal ArticleDOI
TL;DR: The results reveal that the low metastatic osteosarcoma cells display larger spreading sizes and generate higher forces than the experimentally selected, highly malignant variants, indicating that only a set of phenotyping methods provides the full picture of cell mechanics.
Abstract: Osteosarcoma is the most frequent primary tumor of bone and is characterized by its high tendency to metastasize in lungs. Although treatment in cases of early diagnosis results in a 5-yr survival rate of nearly 60%, the prognosis for patients with secondary lesions at diagnosis is poor, and their 5-yr survival rate remains below 30%. In the present work, we have used a number of analytical methods to investigate the impact of increased metastatic potential on the biophysical properties and force generation of osteosarcoma cells. With that aim, we used two paired osteosarcoma cell lines, with each one comprising a parental line with low metastatic potential and its experimentally selected, highly metastatic form. Mechanical characterization was performed by means of atomic force microscopy, tensile biaxial deformation, and real-time deformability, and cell traction was measured using two-dimensional and micropost-based traction force microscopy. Our results reveal that the low metastatic osteosarcoma cells display larger spreading sizes and generate higher forces than the experimentally selected, highly malignant variants. In turn, the outcome of cell stiffness measurements strongly depends on the method used and the state of the probed cell, indicating that only a set of phenotyping methods provides the full picture of cell mechanics.

Journal ArticleDOI
TL;DR: How cytoskeletal proteins operate in the nucleus and how they may be important to consolidate nuclear architecture for sustained gene expression or silencing are summarized.
Abstract: The emerging role of cytoskeletal proteins in the cell nucleus has become a new frontier in cell biology. Actin and actin-binding proteins regulate chromatin and gene expression, but importantly they are beginning to be essential players in genome organization. These actin-based functions contribute to genome stability and integrity while affecting DNA replication and global transcription patterns. This is likely to occur through interactions of actin with nuclear components including nuclear lamina and subnuclear organelles. An exciting future challenge is to understand how these actin-based genome-wide mechanisms may regulate development and differentiation by interfering with the mechanical properties of the cell nucleus and how regulated actin polymerization plays a role in maintaining nuclear architecture. With a special focus on actin, here we summarize how cytoskeletal proteins operate in the nucleus and how they may be important to consolidate nuclear architecture for sustained gene expression or silencing.

Journal ArticleDOI
TL;DR: It is confirmed that ER converts to higher curvature during mitosis, and REEP3/4 are identified as specific and crucial morphogenic factors mediating ER tubulation duringMitosis, the first cell cycle-specific role for RHD proteins is defined.
Abstract: The endoplasmic reticulum (ER) is extensively remodeled during metazoan open mitosis. However, whether the ER becomes more tubular or more cisternal during mitosis is controversial, and dedicated factors governing the morphology of the mitotic ER have remained elusive. Here, we describe the ER membrane proteins REEP3 and REEP4 as major determinants of ER morphology in metaphase cells. REEP3/4 are specifically required for generating the high-curvature morphology of mitotic ER and promote ER tubulation through their reticulon homology domains (RHDs). This ER-shaping activity of REEP3/4 is distinct from their previously described function to clear ER from metaphase chromatin. We further show that related REEP proteins do not contribute to mitotic ER shaping and provide evidence that the REEP3/4 carboxyterminus mediates regulation of the proteins. These findings confirm that ER converts to higher curvature during mitosis, identify REEP3/4 as specific and crucial morphogenic factors mediating ER tubulation during mitosis, and define the first cell cycle-specific role for RHD proteins.

Journal ArticleDOI
TL;DR: The early Caenorhabditis elegans embryo is used to explore how the actin filament network in the ring and the surrounding cortex is regulated by the single cytokinesis formin CYK-1 and the ARP2/3 complex, which nucleate nonbranched and branched filaments, respectively.
Abstract: Cytokinesis completes cell division by constriction of an actomyosin contractile ring that separates the two daughter cells. Here we use the early Caenorhabditis elegans embryo to explore how the actin filament network in the ring and the surrounding cortex is regulated by the single cytokinesis formin CYK-1 and the ARP2/3 complex, which nucleate nonbranched and branched filaments, respectively. We show that CYK-1 and the ARP2/3 complex are the predominant F-actin nucleators responsible for generating distinct cortical F-actin architectures and that depletion of either nucleator affects the kinetics of cytokinesis. CYK-1 is critical for normal F-actin levels in the contractile ring, and acute inhibition of CYK-1 after furrow ingression slows ring constriction rate, suggesting that CYK-1 activity is required throughout ring constriction. Surprisingly, although the ARP2/3 complex does not localize in the contractile ring, depletion of the ARP2 subunit or treatment with ARP2/3 complex inhibitor delays contractile ring formation and constriction. We present evidence that the delays are due to an excess in formin-nucleated cortical F-actin, suggesting that the ARP2/3 complex negatively regulates CYK-1 activity. We conclude that the kinetics of cytokinesis are modulated by interplay between the two major actin filament nucleators.

Journal ArticleDOI
TL;DR: Results argue against stable interactions of Rheb with lysosomes and instead that transient membrane interactions optimally allow RheB to activate mTORC1 signaling.
Abstract: Stable localization of the Rheb GTPase to lysosomes is thought to be required for activation of mTOR complex 1 (mTORC1) signaling. However, the lysosome targeting mechanisms for Rheb remain unclear. We therefore investigated the relationship between Rheb subcellular localization and mTORC1 activation. Surprisingly, we found that Rheb was undetectable at lysosomes. Nonetheless, functional assays in knockout human cells revealed that farnesylation of the C-terminal CaaX motif on Rheb was essential for Rheb-dependent mTORC1 activation. Although farnesylated Rheb exhibited partial endoplasmic reticulum (ER) localization, constitutively targeting Rheb to ER membranes did not support mTORC1 activation. Further systematic analysis of Rheb lipidation revealed that weak, nonselective, membrane interactions support Rheb-dependent mTORC1 activation without the need for a specific lysosome targeting motif. Collectively, these results argue against stable interactions of Rheb with lysosomes and instead that transient membrane interactions optimally allow Rheb to activate mTORC1 signaling.

Journal ArticleDOI
TL;DR: Functional and structural studies show that PACRG and FAP20 comprise the inner junction bridge that serves as a hub for both directly modulating dynein-driven microtubule sliding, as well as for the assembly of additional ciliary components that play essential roles in generating coordinated ciliary beating.
Abstract: We previously demonstrated that PACRG plays a role in regulating dynein-driven microtubule sliding in motile cilia. To expand our understanding of the role of PACRG in ciliary assembly and motility, we used a combination of functional and structural studies, including newly identified Chlamydomonas pacrg mutants. Using cryo-electron tomography we show that PACRG and FAP20 form the inner junction between the A- and B-tubule along the length of all nine ciliary doublet microtubules. The lack of PACRG and FAP20 also results in reduced assembly of inner-arm dynein IDA b and the beak-MIP structures. In addition, our functional studies reveal that loss of PACRG and/or FAP20 causes severe cell motility defects and reduced in vitro microtubule sliding velocities. Interestingly, the addition of exogenous PACRG and/or FAP20 protein to isolated mutant axonemes restores microtubule sliding velocities, but not ciliary beating. Taken together, these studies show that PACRG and FAP20 comprise the inner junction bridge that serves as a hub for both directly modulating dynein-driven microtubule sliding, as well as for the assembly of additional ciliary components that play essential roles in generating coordinated ciliary beating.

Journal ArticleDOI
TL;DR: A novel small molecule EACC is reported that inhibits autophagic flux by blocking autophagosome–lysosome fusion and can be used as a tool to study autophagy-related SNARE trafficking.
Abstract: Autophagy is an evolutionarily conserved intracellular lysosomal degradation pathway. It is a multistep process involving de novo formation of double membrane autophagosomes that capture cytosolic constituents (cargo) and eventually fuse with lysosomes wherein the cargo gets degraded and resulting simpler biomolecules get recycled. In addition to their autophagy function, several of the autophagy-related proteins work at the interface of other vesicular trafficking pathways. Hence, development of specific autophagy modulators that do not perturb general endo-lysosomal traffic possesses unique challenges. In this article, we report a novel small molecule EACC that inhibits autophagic flux by blocking autophagosome-lysosome fusion. Strikingly, unlike other late stage inhibitors, EACC does not have any effect on lysosomal properties or on endocytosis-mediated degradation of EGF receptor. EACC affects the translocation of SNAREs Stx17 and SNAP29 on autophagosomes without impeding the completion of autophagosomes. EACC treatment also reduces the interaction of Stx17 with the HOPS subunit VPS33A and the cognate lysosomal R-SNARE VAMP8. Interestingly, this effect of EACC although quite robust is reversible and hence EACC can be used as a tool to study autophagosomal SNARE trafficking. Our results put forward a novel method to block autophagic flux by impeding the action of the autophagosomal SNAREs.

Journal ArticleDOI
TL;DR: The results show that matrix localization of this proteinase facilitates the initiation of collagen assembly and suggest a model in which FN matrix and associated heparan sulfate act as a scaffold to organize enzyme and substrate for procollagen processing.
Abstract: A novel fibronectin (FN) matrix–based mechanism for proteolytic processing of procollagen I is described. The procollagen proteinase BMP-1 binds the HepII domain of FN, and heparin increases BMP-1–...

Journal ArticleDOI
TL;DR: It is demonstrated that the WDR34 intermediate chain interacts with the two light chains, DYNLL1/DYNLL2 and DYNLRB 1/DYNL RB2, via its distinct sites, which is crucial for dynein-2 function in retrograde ciliary protein trafficking.
Abstract: The dynein-2 complex, containing 11 subunits, drives retrograde ciliary protein trafficking. We here show the interaction mode of the WDR34 intermediate chain with the light chains. We further demo...

Journal ArticleDOI
TL;DR: It is demonstrated that claudin trafficking and half-life depend on carboxy-terminal sequences and that different claudins compete for tight junction localization.
Abstract: A network of claudin strands creates continuous cell-cell contacts to form the intercellular tight junction barrier; a second protein, occludin, is associated along these strands. The physiological barrier remains stable despite protein turnover, which involves removal and replacement of claudins both in the steady state and during junction remodeling. Here we use a pulse-block-pulse labeling protocol with fluorescent ligands to label SNAP/CLIP-tags fused to claudins and occludin to identify their spatial trafficking pathways and kinetics in Madin-Darby canine kidney monolayers. We find that claudins are first delivered to the lateral membrane and, over time, enter the junction strand network from the basal side; this is followed by slow replacement of older claudins in the strands. In contrast, even at early times, newly synthesized occludin is found throughout the network. Taking the results together with our previous documentation of the mechanism for claudin strand assembly in a fibroblast model, we speculate that newly synthesized claudins are added at strand breaks and free ends; these are most common in the basalmost edge of the junction. In contrast, occludin can be added directly within the strand network. We further demonstrate that claudin trafficking and half-life depend on carboxy-terminal sequences and that different claudins compete for tight junction localization.

Journal ArticleDOI
TL;DR: This Perspective highlights breakthrough findings providing new insight into lamin-linked mechanisms of mechanotransduction and chromatin regulation and discusses how a combined and interrelated impairment of these functions by LMNA mutations may impair the complex mechanosignaling network and cause tissue-specific pathologies in laminopathies.
Abstract: Laminopathies are a diverse group of rare diseases with various pathologies in different tissues, which are linked to mutations in the LMNA gene. Historically, the structural disease model proposed mechanical defects of the lamina and nuclear fragility, the gene expression model impairment of spatial chromatin organization and signaling pathways as underlying mechanisms leading to the pathologies. Exciting findings in the past few years showing that mechanical forces are directly transmitted into the nucleus, where they affect chromatin organization and mechanoresponsive signaling molecules, have led to a revised concept of an integrative unified disease model, in which lamin-mediated pathways in mechanotransduction and chromatin regulation are highly interconnected and mutually dependent. In this Perspective we highlight breakthrough findings providing new insight into lamin-linked mechanisms of mechanotransduction and chromatin regulation and discuss how a combined and interrelated impairment of these functions by LMNA mutations may impair the complex mechanosignaling network and cause tissue-specific pathologies in laminopathies.