scispace - formally typeset
Search or ask a question

Showing papers in "Nature Reviews Cancer in 2012"


Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations


Journal ArticleDOI
TL;DR: In this Opinion article, the context-specific nature of infiltrating immune cells can affect the prognosis of patients is discussed.
Abstract: Tumours grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokines, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumour progression, which can vary according to cancer type. In this Opinion article we discuss how the context-specific nature of infiltrating immune cells can affect the prognosis of patients.

3,759 citations


Journal ArticleDOI
TL;DR: This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.
Abstract: The use of monoclonal antibodies (mAbs) for cancer therapy has achieved considerable success in recent years. Antibody-drug conjugates are powerful new treatment options for lymphomas and solid tumours, and immunomodulatory antibodies have also recently achieved remarkable clinical success. The development of therapeutic antibodies requires a deep understanding of cancer serology, protein-engineering techniques, mechanisms of action and resistance, and the interplay between the immune system and cancer cells. This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.

1,788 citations


Journal ArticleDOI
TL;DR: Dendritic cells are an essential target in efforts to generate therapeutic immunity against cancer owing to their ability to control both immune tolerance and immunity.
Abstract: Cancer immunotherapy attempts to harness the power and specificity of the immune system to treat tumours. The molecular identification of human cancer-specific antigens has allowed the development of antigen-specific immunotherapy. In one approach, autologous antigen-specific T cells are expanded ex vivo and then re-infused into patients. Another approach is through vaccination; that is, the provision of an antigen together with an adjuvant to elicit therapeutic T cells in vivo. Owing to their properties, dendritic cells (DCs) are often called 'nature's adjuvants' and thus have become the natural agents for antigen delivery. After four decades of research, it is now clear that DCs are at the centre of the immune system owing to their ability to control both immune tolerance and immunity. Thus, DCs are an essential target in efforts to generate therapeutic immunity against cancer.

1,737 citations


Journal ArticleDOI
TL;DR: The role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD are discussed.
Abstract: Although it was thought that apoptotic cells, when rapidly phagocytosed, underwent a silent death that did not trigger an immune response, in recent years a new concept of immunogenic cell death (ICD) has emerged. The immunogenic characteristics of ICD are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface-exposed calreticulin (CRT), secreted ATP and released high mobility group protein B1 (HMGB1). Most DAMPs can be recognized by pattern recognition receptors (PRRs). In this Review, we discuss the role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD.

1,736 citations


Journal ArticleDOI
TL;DR: This Review discusses both genetic and non-genetic causes of phenotypic heterogeneity of tumour cells, with an emphasis on heritable phenotypes that serve as a substrate for clonal selection and the implications of intra-tumour heterogeneity in diagnostics and the development of therapeutic resistance.
Abstract: Populations of tumour cells display remarkable variability in almost every discernable phenotypic trait, including clinically important phenotypes such as ability to seed metastases and to survive therapy. This phenotypic diversity results from the integration of both genetic and non-genetic influences. Recent technological advances have improved the molecular understanding of cancers and the identification of targets for therapeutic interventions. However, it has become exceedingly apparent that the utility of profiles based on the analysis of tumours en masse is limited by intra-tumour genetic and epigenetic heterogeneity, as characteristics of the most abundant cell type might not necessarily predict the properties of mixed populations. In this Review, we discuss both genetic and non-genetic causes of phenotypic heterogeneity of tumour cells, with an emphasis on heritable phenotypes that serve as a substrate for clonal selection. We discuss the implications of intra-tumour heterogeneity in diagnostics and the development of therapeutic resistance.

1,717 citations


Journal ArticleDOI
TL;DR: Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment and activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.
Abstract: Contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Although mutations in mitochondrial genes are common in cancer cells, they do not inactivate mitochondrial energy metabolism but rather alter the mitochondrial bioenergetic and biosynthetic state. These states communicate with the nucleus through mitochondrial 'retrograde signalling' to modulate signal transduction pathways, transcriptional circuits and chromatin structure to meet the perceived mitochondrial and nuclear requirements of the cancer cell. Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment. These alterations activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.

1,709 citations


Journal ArticleDOI
TL;DR: In this article, the authors define the context-specific role for autophagy in cancer and the mechanisms involved will be important to guide autoophagy-based therapeutic intervention, which can be either tumour suppressive or tumour promoting.
Abstract: Autophagy (also known as macroautophagy) captures intracellular components in autophagosomes and delivers them to lysosomes, where they are degraded and recycled. Autophagy can have two functions in cancer. It can be tumour suppressive through the elimination of oncogenic protein substrates, toxic unfolded proteins and damaged organelles. Alternatively, it can be tumour promoting in established cancers through autophagy-mediated intracellular recycling that provides substrates for metabolism and that maintains the functional pool of mitochondria. Therefore, defining the context-specific role for autophagy in cancer and the mechanisms involved will be important to guide autophagy-based therapeutic intervention.

1,449 citations


Journal ArticleDOI
TL;DR: A more thorough understanding of the unique roles performed by HIF1α and HIF2α in human neoplasia is warranted.
Abstract: Hypoxia-inducible factors (HIFs) are broadly expressed in human cancers, and HIF1α and HIF2α were previously suspected to promote tumour progression through largely overlapping functions. However, this relatively simple model has now been challenged in light of recent data from various approaches that reveal unique and sometimes opposing activities of these HIFα isoforms in both normal physiology and disease. These effects are mediated in part through the regulation of unique target genes, as well as through direct and indirect interactions with important oncoproteins and tumour suppressors, including MYC and p53. As HIF inhibitors are currently undergoing clinical evaluation as cancer therapeutics, a more thorough understanding of the unique roles performed by HIF1α and HIF2α in human neoplasia is warranted.

1,338 citations


Journal ArticleDOI
TL;DR: Targeted therapies and cytotoxic agents also modulate immune responses, which raises the possibility that these treatment strategies might be effectively combined with immunotherapy to improve clinical outcomes.
Abstract: During the past two decades, the paradigm for cancer treatment has evolved from relatively nonspecific cytotoxic agents to selective, mechanism-based therapeutics. Cancer chemotherapies were initially identified through screens for compounds that killed rapidly dividing cells. These drugs remain the backbone of current treatment, but they are limited by a narrow therapeutic index, significant toxicities and frequently acquired resistance. More recently, an improved understanding of cancer pathogenesis has given rise to new treatment options, including targeted agents and cancer immunotherapy. Targeted approaches aim to inhibit molecular pathways that are crucial for tumour growth and maintenance; whereas, immunotherapy endeavours to stimulate a host immune response that effectuates long-lived tumour destruction. Targeted therapies and cytotoxic agents also modulate immune responses, which raises the possibility that these treatment strategies might be effectively combined with immunotherapy to improve clinical outcomes.

1,298 citations


Journal ArticleDOI
TL;DR: Progress in understanding the structure and function of HGF/SF, MET and associated signalling components has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors, as well as results from recent clinical studies that demonstrate that inhibiting MET signalling in several types of solid human tumours has major therapeutic value.
Abstract: Uncontrolled cell survival, growth, angiogenesis and metastasis are essential hallmarks of cancer. Genetic and biochemical data have demonstrated that the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, have a causal role in all of these processes, thus providing a strong rationale for targeting these molecules in cancer. Parallel progress in understanding the structure and function of HGF/SF, MET and associated signalling components has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors. In this Review, we discuss these advances, as well as results from recent clinical studies that demonstrate that inhibiting MET signalling in several types of solid human tumours has major therapeutic value.

Journal ArticleDOI
TL;DR: The links between the two proteins must exist to explain the marked similarity of human cancer susceptibility that arises with germline mutations in these genes, and the proteins work in concert to protect the genome from double-strand DNA damage during DNA replication.
Abstract: The proteins encoded by the two major breast cancer susceptibility genes, BRCA1 and BRCA2, work in a common pathway of genome protection. However, the two proteins work at different stages in the DNA damage response (DDR) and in DNA repair. BRCA1 is a pleiotropic DDR protein that functions in both checkpoint activation and DNA repair, whereas BRCA2 is a mediator of the core mechanism of homologous recombination. The links between the two proteins are not well understood, but they must exist to explain the marked similarity of human cancer susceptibility that arises with germline mutations in these genes. As discussed here, the proteins work in concert to protect the genome from double-strand DNA damage during DNA replication.

Journal ArticleDOI
TL;DR: New insights are obtained into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.
Abstract: The cancer stem cell (CSC) concept derives from the fact that cancers are dysregulated tissue clones whose continued propagation is vested in a biologically distinct subset of cells that are typically rare. This idea is not new, but has recently gained prominence because of advances in defining normal tissue hierarchies, a greater appreciation of the multistep nature of oncogenesis and improved methods to propagate primary human cancers in immunodeficient mice. As a result we have obtained new insights into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.

Journal ArticleDOI
TL;DR: This Review highlights the research, opportunities and challenges for integrating engineering sciences with cancer biology and medicine to develop nanotechnology-based tools for treating metastatic disease.
Abstract: Metastasis accounts for the vast majority of cancer deaths. The unique challenges for treating metastases include their small size, high multiplicity and dispersion to diverse organ environments. Nanoparticles have many potential benefits for diagnosing and treating metastatic cancer, including the ability to transport complex molecular cargoes to the major sites of metastasis, such as the lungs, liver and lymph nodes, as well as targeting to specific cell populations within these organs. This Review highlights the research, opportunities and challenges for integrating engineering sciences with cancer biology and medicine to develop nanotechnology-based tools for treating metastatic disease.

Journal ArticleDOI
Michael Pollak1
TL;DR: Clinical studies may benefit from the use of predictive biomarkers to identify probable responders, theUse of rational combination therapies and the consideration of alternative targeting strategies, such as ligand-specific antibodies and receptor-specific tyrosine kinase inhibitors.
Abstract: Although several early phase clinical trials raised enthusiasm for the use of insulin-like growth factor I receptor (IGF1R)-specific antibodies for cancer treatment, initial Phase III results in unselected patients have been disappointing. Further clinical studies may benefit from the use of predictive biomarkers to identify probable responders, the use of rational combination therapies and the consideration of alternative targeting strategies, such as ligand-specific antibodies and receptor-specific tyrosine kinase inhibitors. Targeting insulin and IGF signalling also needs to be considered in the broader context of the pathophysiology that relates obesity and diabetes to neoplasia, and the effects of anti-diabetic drugs, including metformin, on cancer risk and prognosis. The insulin and IGFI receptor family is also relevant to the development of PI3K-AKT pathway inhibitors.

Journal ArticleDOI
TL;DR: This Opinion article aims to rationalize conflicting perspectives by critiquing the context dependence of NRF2 functions and the experimental methods behind these conflicting data.
Abstract: Many studies of chemopreventive drugs have suggested that their beneficial effects on suppression of carcinogenesis and many other chronic diseases are mediated through activation of the transcription factor NFE2-related factor 2 (NRF2). More recently, genetic analyses of human tumours have indicated that NRF2 may conversely be oncogenic and cause resistance to chemotherapy. It is therefore controversial whether the activation, or alternatively the inhibition, of NRF2 is a useful strategy for the prevention or treatment of cancer. This Opinion article aims to rationalize these conflicting perspectives by critiquing the context dependence of NRF2 functions and the experimental methods behind these conflicting data.

Journal ArticleDOI
TL;DR: First, to prevent or reverse therapy resistance; and second, using a synthetic lethal approach to specifically kill cancer cells that are dependent on a compensatory DNA repair pathway for survival in the context of cancer-associated oxidative and replicative stress are tested.
Abstract: Dysregulation of DNA damage repair and signalling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. Dysfunction of one DNA repair pathway may be compensated for by the function of another compensatory DDR pathway, which may be increased and contribute to resistance to DNA-damaging chemotherapy and radiotherapy. Therefore, DDR pathways make an ideal target for therapeutic intervention; first, to prevent or reverse therapy resistance; and second, using a synthetic lethal approach to specifically kill cancer cells that are dependent on a compensatory DNA repair pathway for survival in the context of cancer-associated oxidative and replicative stress. These hypotheses are currently being tested in the laboratory and are being translated into clinical studies.

Journal ArticleDOI
TL;DR: This Timeline article focuses on the ERBB network of receptor tyrosine kinases (RTKs), which exemplifies how a constant dialogue between basic research and medical oncology can translate into both a sustained pipeline of novel drugs and ways to overcome acquired treatment resistance in patients.
Abstract: Although it is broadly agreed that the improved treatment of patients with cancer will depend on a deeper molecular understanding of the underlying pathogenesis, only a few examples are already available. This Timeline article focuses on the ERBB (also known as HER) network of receptor tyrosine kinases (RTKs), which exemplifies how a constant dialogue between basic research and medical oncology can translate into both a sustained pipeline of novel drugs and ways to overcome acquired treatment resistance in patients. We track the key early discoveries that linked this RTK family to oncogenesis, the course of pioneering clinical research and their merger into a systems-biology framework that is likely to inspire further generations of effective therapeutic strategies.

Journal ArticleDOI
TL;DR: If the NF-κB pathway is to be properly exploited as a target for both anticancer and anti-inflammatory drugs, it is appropriate to reconsider the complex roles of the individual NF-σκB subunits.
Abstract: It is only recently that the full importance of nuclear factor-κB (NF-κB) signalling to cancer development has been understood. Although much attention has focused on the upstream pathways leading to NF-κB activation, it is now becoming clear that the inhibitor of NF-κB kinases (IKKs), which regulate NF-κB activation, have many independent functions in tissue homeostasis and normal immune function that could compromise the clinical utility of IKK inhibitors. Therefore, if the NF-κB pathway is to be properly exploited as a target for both anticancer and anti-inflammatory drugs, it is appropriate to reconsider the complex roles of the individual NF-κB subunits.

Journal ArticleDOI
TL;DR: In this article, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylation agent toxicity.
Abstract: Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

Journal ArticleDOI
TL;DR: Using this model system, scientists can study at which points the genetic alterations identified through whole-tumour molecular analyses function in the initiation and progression of myeloma.
Abstract: Based on the clinical features of myeloma and related malignancies of plasma cells, it has been possible to generate a model system of myeloma progression from a normal plasma cell through smouldering myeloma to myeloma and then plasma cell leukaemia. Using this model system we can study at which points the genetic alterations identified through whole-tumour molecular analyses function in the initiation and progression of myeloma. Further genetic complexity, such as intraclonal heterogeneity, and insights into the molecular evolution and intraclonal dynamics in this model system are crucial to our understandings of tumour progression, treatment resistance and the use of currently available and future treatments.

Journal ArticleDOI
TL;DR: In the legend to Figure 6c, the distribution according to therapeutic strategy (monotherapy versus combined therapy) involving HGF/SF–MET monotherapies should have read 44%.
Abstract: Nature Reviews Cancer 12, 89–103 (2012) In the legend to Figure 6c, the distribution according to therapeutic strategy (monotherapy versus combined therapy) involving HGF/SF–MET monotherapies should have read 44%. This has been corrected on both html and pdf versions.

Journal ArticleDOI
TL;DR: Recent genetic and functional data implicating mutations in epigenetic modifiers, including tet methylcytosine dioxygenase 2 (TET2), isocitrate dehydrogenase 1 (IDH1), IDH2, additional sex combs-like 1 (ASXL1), enhancer of zeste homologue 2 (EZH2) and DNA methyltransferase 3A (DNMT3A) are discussed.
Abstract: Recent genomic studies have identified novel recurrent somatic mutations in patients with myeloid malignancies, including myeloproliferative neoplasms (MPNs), myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). In some cases these mutations occur in genes with known roles in regulating chromatin and/or methylation states in haematopoietic progenitors, and in other cases genetic and functional studies have elucidated a role for specific mutations in altering epigenetic patterning in myeloid malignancies. In this Review we discuss recent genetic and functional data implicating mutations in epigenetic modifiers, including tet methylcytosine dioxygenase 2 (TET2), isocitrate dehydrogenase 1 (IDH1), IDH2, additional sex combs-like 1 (ASXL1), enhancer of zeste homologue 2 (EZH2) and DNA methyltransferase 3A (DNMT3A), in the pathogenesis of MPN, MDS and AML, and discuss how this knowledge is leading to novel clinical, biological and therapeutic insights.

Journal ArticleDOI
TL;DR: More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.
Abstract: The cancer stem cell (CSC) concept has important therapeutic implications, but its investigation has been hampered both by a lack of consistency in the terms used for these cells and by how they are defined. Evidence of their heterogeneous origins, frequencies and their genomic, as well as their phenotypic and functional, properties has added to the confusion and has fuelled new ideas and controversies. Participants in The Year 2011 Working Conference on CSCs met to review these issues and to propose a conceptual and practical framework for CSC terminology. More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is also recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.

Journal ArticleDOI
TL;DR: All malignant cancers, whether inherited or sporadic, are fundamentally governed by Darwinian dynamics, and these principles also embody fundamental principles that can illuminate strategies for the successful management of cancer.
Abstract: All malignant cancers, whether inherited or sporadic, are fundamentally governed by Darwinian dynamics The process of carcinogenesis requires genetic instability and highly selective local microenvironments, the combination of which promotes somatic evolution These microenvironmental forces, specifically hypoxia, acidosis and reactive oxygen species, are not only highly selective, but are also able to induce genetic instability As a result, malignant cancers are dynamically evolving clades of cells living in distinct microhabitats that almost certainly ensure the emergence of therapy-resistant populations Cytotoxic cancer therapies also impose intense evolutionary selection pressures on the surviving cells and thus increase the evolutionary rate Importantly, the principles of Darwinian dynamics also embody fundamental principles that can illuminate strategies for the successful management of cancer

Journal ArticleDOI
TL;DR: Small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described and the implications for small molecule epigenetic targeting of chromatin networks in cancer are discussed.
Abstract: The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.

Journal ArticleDOI
TL;DR: Two principle types of metastatic progression are proposed: phenotypic plasticity involving transient EMT–MET processes and intrinsic genetic alterations keeping cells in an EMT and stemness state.
Abstract: Why are many metastases differentiated? Invading and disseminating carcinoma cells can undergo an epithelial-mesenchymal transition (EMT), which is associated with a gain of stem cell-like behaviour. Therefore, EMT has been linked to the cancer stem cell concept. However, it is a matter of debate how subsequent mesenchymal-epithelial transition (MET) fits into the metastatic process and whether a MET is essential. In this Opinion article, I propose two principle types of metastatic progression: phenotypic plasticity involving transient EMT-MET processes and intrinsic genetic alterations keeping cells in an EMT and stemness state. This simplified classification integrates clinically relevant aspects of dormancy, metastatic tropism and therapy resistance, and implies perspectives on treatment strategies against metastasis.

Journal ArticleDOI
TL;DR: The availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup, pinpointing previously unappreciated diagnostic and therapeutic targets.
Abstract: The division of medulloblastoma into different subgroups by microarray expression profiling has dramatically changed our perspective of this malignant childhood brain tumour Now, the availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup The implications of these findings for the management of patients are readily apparent, pinpointing previously unappreciated diagnostic and therapeutic targets In this Review, we summarize the 'explosion' of data emerging from the application of modern genomics to medulloblastoma, and in particular the recurrent targets of mutation in medulloblastoma subgroups These data are currently making their way into clinical trials as we seek to integrate conventional and molecularly targeted therapies

Journal ArticleDOI
TL;DR: Tumours with specific DNA repair defects can be completely dependent on back-up DNA repair pathways for their survival and may acquire resistance by invoking biochemical mechanisms that reduce drug action or by acquiring additional alterations in DNA damage response pathways.
Abstract: Tumours with specific DNA repair defects can be completely dependent on back-up DNA repair pathways for their survival. This dependence can be exploited therapeutically to induce synthetic lethality in tumour cells. For instance, homologous recombination (HR)-deficient tumours can be effectively targeted by DNA double-strand break-inducing agents. However, not all HR-defective tumours respond equally well to this type of therapy. Tumour cells may acquire resistance by invoking biochemical mechanisms that reduce drug action or by acquiring additional alterations in DNA damage response pathways. A thorough understanding of these processes is important for predicting treatment response and for the development of novel treatment strategies that prevent the emergence of therapy-resistant tumours.

Journal ArticleDOI
TL;DR: Some advances are highlighted in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Abstract: After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.