scispace - formally typeset
Search or ask a question

Showing papers in "Plant Biotechnology Journal in 2018"


Journal ArticleDOI
TL;DR: The low‐gluten, transgene‐free wheat lines described here could be used to produce low-gluten foodstuff and serve as source material to introgress this trait into elite wheat varieties.
Abstract: Celiac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins from wheat, barley, and rye. The -gliadin gene family of wheat contains four highly stimulatory peptides, of which the 33-mer is the main immunodominant peptide in celiac patients. We designed two sgRNAs to target a conserved region adjacent to the coding sequence for the 33-mer in the -gliadin genes. Twenty-one mutant lines were generated, all showing strong reduction in -gliadins. Up to 35 different genes were mutated in one of the lines of the 45 different genes identified in the wild type, while immunoreactivity was reduced by 85%. Transgene-free lines were identified, and no off-target mutations have been detected in any of the potential targets. The low-gluten, transgene-free wheat lines described here could be used to produce low gluten foodstuff and serve as source material to introgress this trait into elite wheat varieties. This article is protected by copyright. All rights reserved.

384 citations


Journal ArticleDOI
TL;DR: The data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eif4G could not be maintained in homozygous state, and the final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence.
Abstract: Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.

254 citations


Journal ArticleDOI
TL;DR: Some ‘transgene‐clean’ soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations are identified, which may provide materials for more in‐depth research of Gm FT2a functions and the molecular mechanism of photoperiod responses inSoya bean.
Abstract: Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max) In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens-mediated transformation Site-directed mutations were observed at all targeted sites by DNA sequencing analysis T1-generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1-bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58', E116°20') We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long-day and short-day conditions We identified some 'transgene-clean' soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations These 'transgene-clean' mutants of GmFT2a may provide materials for more in-depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean They will also contribute to soya bean breeding and regional introduction

229 citations


Journal ArticleDOI
TL;DR: It is concluded that the CRISPR/Cas9 system allows precise genome editing in the first generation of grape and represents a useful tool for gene functional analysis and grape molecular breeding.
Abstract: The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is a powerful tool for editing plant genomes. Efficient genome editing of grape (Vitis vinifera) suspension cells using the type II CRISPR/Cas9 system has been demonstrated; however, it has not been established whether this system can be applied to get biallelic mutations in the first generation of grape. In this current study, we designed four guide RNAs for the VvWRKY52 transcription factor gene for using with the CRISPR/Cas9 system, and obtained transgenic plants via Agrobacterium-mediated transformation, using somatic embryos of the Thompson Seedless cultivar. Analysis of the first-generation transgenic plants verified 22 mutant plants of the 72 T-DNA-inserted plants. Of these, 15 lines carried biallelic mutations and seven were heterozygous. A range of RNA-guided editing events, including large deletions, were found in the mutant plants, while smaller deletions comprised the majority of the detected mutations. Sequencing of potential off-target sites for all four targets revealed no off-target events. In addition, knockout of VvWRKY52 in grape increased the resistance to Botrytis cinerea. We conclude that the CRISPR/Cas9 system allows precise genome editing in the first generation of grape and represents a useful tool for gene functional analysis and grape molecular breeding.

217 citations


Journal ArticleDOI
TL;DR: Improved the process of protoplast isolation and transfection of several plant species and developed a method to regenerate single mutagenized Nicotianna tabacum protoplasts into mature plants for targeted mutagenesis of the phytoene desaturase gene.
Abstract: Plant protoplasts are useful for assessing the efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis. We improved the process of protoplast isolation and transfection of several plant species. We also developed a method to isolate and regenerate single mutagenized Nicotianna tabacum protoplasts into mature plants. Following transfection of protoplasts with constructs encoding Cas9 and sgRNAs, target gene DNA could be amplified for further analysis to determine mutagenesis efficiency. We investigated N. tabacum protoplasts and derived regenerated plants for targeted mutagenesis of the phytoene desaturase (NtPDS) gene. Genotyping of albino regenerants indicated that all four NtPDS alleles were mutated in amphidiploid tobacco, and no Cas9 DNA could be detected in most regenerated plants.

189 citations


Journal ArticleDOI
TL;DR: This study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress‐related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.
Abstract: Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.

188 citations


Journal ArticleDOI
TL;DR: The data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.
Abstract: In recent years, the type II CRISPR system has become a widely used and robust technique to implement site-directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single-site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ-aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty-three genome-edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19-fold higher than that in wild-type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.

185 citations


Journal ArticleDOI
TL;DR: The results prove that the CRISPR/Cas9 system is highly efficient and reliable for allotetraploid cotton genome editing.
Abstract: Gossypium hirsutum is an allotetraploid with a complex genome. Most genes have multiple copies that belong to At and Dt subgenomes. Sequence similarity is also very high between gene homologues. To efficiently achieve site/gene-specific mutation is quite needed. Due to its high efficiency and robustness, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system has exerted broad site-specific genome editing from prokaryotes to eukaryotes. In this study, we utilized a CRISPR/Cas9 system to generate two sgRNAs in a single vector to conduct multiple sites genome editing in allotetraploid cotton. An exogenously transformed gene Discosoma red fluorescent protein2(DsRed2) and an endogenous gene GhCLA1 were chosen as targets. The DsRed2-edited plants in T0 generation reverted its traits to wild type, with vanished red fluorescence the whole plants. Besides, the mutated phenotype and genotype were inherited to their T1 progenies. For the endogenous gene GhCLA1, 75% of regenerated plants exhibited albino phenotype with obvious nucleotides and DNA fragments deletion. The efficiency of gene editing at each target site is 66.7-100%. The mutation genotype was checked for both genes with Sanger sequencing. Barcode-based high-throughput sequencing, which could be highly efficient for genotyping to a population of mutants, was conducted in GhCLA1-edited T0 plants and it matched well with Sanger sequencing results. No off-target editing was detected at the potential off-target sites. These results prove that the CRISPR/Cas9 system is highly efficient and reliable for allotetraploid cotton genome editing.

176 citations


Journal ArticleDOI
TL;DR: There is an association between HEs and PAV events, particularly in recent Brassica napus synthetic accessions, and these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species.
Abstract: Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In the present study we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterisation of the association between HEs and PAVs in B. napus at the pangenome level. This article is protected by copyright. All rights reserved.

173 citations


Journal ArticleDOI
TL;DR: The reprogrammed CRISPR‐Cas9 system from Francisella novicida is reprogramed to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants, thereby broadening the use of such technology for virus control in agricultural field.
Abstract: Recently, CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR-Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR-Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus-targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.

168 citations


Journal ArticleDOI
TL;DR: It is demonstrated that overexpression of MdATG18a in apple plants enhances their tolerance to drought stress, probably because of greater autophagosome production and a higher frequency of autophagy, which plays important roles in the drought response.
Abstract: Autophagy is a major and conserved pathway for delivering and recycling unwanted proteins or damaged organelles to be degraded in the vacuoles. AuTophaGy-related (ATG) protein 18a has been established as one of the essential components for autophagy occurrence in Arabidopsis thaliana. We previously cloned the ATG18a homolog from Malus domestica (MdATG18a) and monitored its responsiveness to various abiotic stresses at the transcriptional level. However, it is still unclear what its function is under abiotic stress in apple. Here, we found that heterologous expression of MdATG18a in tomato plants markedly enhanced their tolerance to drought. Overexpression (OE) of that gene in apple plants improved their drought tolerance as well. Under drought conditions, the photosynthesis rate and antioxidant capacity were significantly elevated in OE lines when compared with the untransformed wild type (WT). Transcript levels of other important apple ATG genes were more strongly up-regulated in transgenic MdATG18a OE lines than in the WT. The percentage of insoluble protein in proportion to total protein was lower and less oxidized protein accumulated in the OE lines than in the WT under drought stress. This was probably due to more autophagosomes being formed in the former. These results demonstrate that overexpression of MdATG18a in apple plants enhances their tolerance to drought stress, probably because of greater autophagosome production and a higher frequency of autophagy. Those processes help degrade protein aggregation and limit the oxidation damage, thereby suggesting that autophagy plays important roles in the drought response.

Journal ArticleDOI
TL;DR: It is demonstrated that inhibiting expression of the rice amino acid transporter OsAAP3 increased grain yield due to a formation of larger numbers of tillers as a result of increased bud outgrowth and manipulation of OsA AP3 expression is suggested to increase grain yield.
Abstract: Amino acid transporters (AATs) play indispensable roles in nutrient allocation during plant development. In this study, we demonstrated that inhibiting expression of the rice amino acid transporter OsAAP3 increased grain yield due to a formation of larger numbers of tillers as a result of increased bud outgrowth. Elevated expression of OsAAP3 in transgenic plants resulted in significantly higher amino acid concentrations of Lys, Arg, His, Asp, Ala, Gln, Gly, Thr and Tyr, and inhibited bud outgrowth and rice tillering. However, RNAi of OsAAP3 decreased significantly Arg, Lys, Asp and Thr concentrations to a small extent, and thus promoted bud outgrowth, increased significantly tiller numbers and effective panicle numbers per plant, and further enhanced significantly grain yield and nitrogen use efficiency (NUE). The promoter sequences of OsAAP3 showed some divergence between Japonica and Indica rice, and expression of the gene was higher in Japonica, which produced fewer tillers than Indica. We generated knockout lines of OsAAP3 on Japonica ZH11 and KY131 using CRISPR technology and found that grain yield could be increased significantly. These results suggest that manipulation of OsAAP3 expression could be used to increase grain yield in rice.

Journal ArticleDOI
TL;DR: A high‐quality draft of the zucchini genome is presented, and three independent lines of evidence support that the C. pepo genome is the result of a whole‐genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances.
Abstract: Summary The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus.

Journal ArticleDOI
TL;DR: A methylome map of the apple genome is presented and widespread DNA methylation alterations in response to water deficit stress are revealed, helpful for understanding potential linkages between DNAmethylation and gene expression in plants growing in natural environments and challenged with abiotic and biotic stresses.
Abstract: Cytosine methylation is an essential feature of epigenetic regulation and is involved in various biological processes. Although cytosine methylation has been analysed at the genomic scale for several plant species, there is a general lack of understanding of the dynamics of global and genic DNA methylation in plants growing in environments challenged with biotic and abiotic stresses. In this study, we mapped cytosine methylation at single-base resolution in the genome of commercial apple (Malus x domestica), and analysed changes in methylation patterns associated with water deficit in representative drought-sensitive and drought-tolerant cultivars. We found that the apple genome exhibits ~54%, ~38% and ~8.5% methylation at CG, CHG and CHH sequence contexts, respectively. We additionally documented changes in gene expression associated with water deficit in an attempt to link methylation and gene expression changes. Global methylation and transcription analysis revealed that promoter-unmethylated genes showed higher expression levels than promoter-methylated genes. Gene body methylation appears to be positively correlated with gene expression. Water deficit stress was associated with changes in methylation at a multitude of genes, including those encoding transcription factors (TFs) and transposable elements (TEs). These results present a methylome map of the apple genome and reveal widespread DNA methylation alterations in response to water deficit stress. These data will be helpful for understanding potential linkages between DNA methylation and gene expression in plants growing in natural environments and challenged with abiotic and biotic stresses.

Journal ArticleDOI
TL;DR: It is suggested that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.
Abstract: Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2 O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild-type) controls. Moreover, up-regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA-induced stomatal closure caused by hydrogen peroxide (H2 O2 ) production in transgenic poplar plants.

Journal ArticleDOI
TL;DR: This study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.
Abstract: Summary Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soybean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double-mutant for the two soybean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soybean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soybean Dicer-like3 gene and the GmHen1a gene were observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole genome sequencing to reveal a spectrum of non-germline targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: Findings suggest that starch degradation during banana fruit ripening may be attributed to the complex actions of numerous enzymes related to starch breakdown at transcriptional and translational levels, and that MabHLH6 may act as a positive regulator of this process via direct activation of a series of starch degradation‐related genes.
Abstract: Although starch degradation has been well studied in model systems such as Arabidopsis leaves and cereal seeds, this process in starchy fruits during ripening, especially in bananas, is largely unknown. In this study, 38 genes encoding starch degradation-related proteins were identified and characterized from banana fruit. Expression analysis revealed that 27 candidate genes were significantly induced during banana fruit ripening, with concomitant conversion of starch-to-sugars. Furthermore, iTRAQ-based proteomics experiments identified 18 starch degradation-associated enzymes bound to the surface of starch granules, of which 10 were markedly up-regulated during ripening. More importantly, a novel bHLH transcription factor, MabHLH6, was identified based on a yeast one-hybrid screening using MaGWD1 promoter as a bait. Transcript and protein levels of MabHLH6 were also increased during fruit ripening. Electrophoretic mobility shift assays, chromatin immunoprecipitation and transient expression experiments confirmed that MabHLH6 activates the promoters of 11 starch degradation-related genes, including MaGWD1, MaLSF2, MaBAM1, MaBAM2, MaBAM8, MaBAM10, MaAMY3, MaAMY3C, MaISA2, MaISA3 and MapGlcT2-2 by recognizing their E-box (CANNTG) motifs present in the promoters. Collectively, these findings suggest that starch degradation during banana fruit ripening may be attributed to the complex actions of numerous enzymes related to starch breakdown at transcriptional and translational levels, and that MabHLH6 may act as a positive regulator of this process via direct activation of a series of starch degradation-related genes.

Journal ArticleDOI
TL;DR: It is concluded that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISpr/Cas 9 editing system in other plants.
Abstract: Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants.

Journal ArticleDOI
TL;DR: Evidence is presented for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted peptide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations, revealing the potential for plant breeding strategies to improve yield traits in currently cultivated rapeseed varieties.
Abstract: Multilocular silique is a desirable agricultural trait with great potential for the development of high-yield varieties of Brassica. To date, no spontaneous or induced multilocular mutants have been reported in Brassica napus, which likely reflects its allotetraploid nature and the extremely low probability of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we present evidence for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted peptide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations. Each BnCLV gene has two copies located in two subgenomes. The multilocular phenotype can be recovered only in knockout mutations of both copies of each BnCLV gene, illustrating that the simultaneous alteration of multiple gene copies by CRISPR/Cas9 mutagenesis has great potential in generating agronomically important mutations in rapeseed. The mutagenesis efficiency varied widely from 0% to 48.65% in T0 with different single-guide RNAs (sgRNAs), indicating that the appropriate selection of the sgRNA is important for effectively generating indels in rapeseed. The double mutation of BnCLV3 produced more leaves and multilocular siliques with a significantly higher number of seeds per silique and a higher seed weight than the wild-type and single mutant plants, potentially contributing to increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/gRNA cassettes by pollination. Our findings reveal the potential for plant breeding strategies to improve yield traits in currently cultivated rapeseed varieties.

Journal ArticleDOI
TL;DR: It is found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants, and the potential of gene editing for further improvement of cassava is demonstrated.
Abstract: Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.

Journal ArticleDOI
TL;DR: A multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild‐type Zea mays Male sterility7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production.
Abstract: Summary Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multi-control sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach, and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds, and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and non-transgenic normal color seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal color are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harboring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: Functional and evolutionary analyses suggest that production of pharmacologically important dammarane‐type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light.
Abstract: Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.

Journal ArticleDOI
TL;DR: It is proposed that transcriptional regulation may play a major role in response to DS, which coordinates with AS regulation to contribute to HS and HD tolerance in wheat.
Abstract: Plant can acquire tolerance to environmental stresses via transcriptome reprogramming at transcriptional and alternative splicing (AS) levels. However, how AS coordinates with transcriptional regulation to contribute to abiotic stresses responses is still ambiguous. In this study, we performed genome-wide analyses of AS responses to drought stress (DS), heat stress (HS) and their combination (HD) in wheat seedlings, and further compared them with transcriptional responses. In total, we found 200, 3576 and 4056 genes exhibiting significant AS pattern changes in response to DS, HS and HD, respectively, and combined drought and heat stress can induce specific AS compared with individual one. In addition, wheat homeologous genes exhibited differential AS responses under stress conditions that more AS events occurred on B subgenome than on A and D genomes. Comparison of genes regulated at AS and transcriptional levels showed that only 12% of DS-induced AS genes were subjected to transcriptional regulation, whereas the proportion increased to ~40% under HS and HD. Functional enrichment analysis revealed that abiotic stress-responsive pathways tended to be highly overrepresented among these overlapped genes under HS and HD. Thus, we proposed that transcriptional regulation may play a major role in response to DS, which coordinates with AS regulation to contribute to HS and HD tolerance in wheat.

Journal ArticleDOI
TL;DR: This study represents the first characterization of lncRNAs involved in resistance to fungal disease and provides new clues to elucidate cotton disease response mechanism.
Abstract: Long non-coding RNAs (lncRNAs) have several known functions in plant development, but their possible roles in responding to plant disease remain largely unresolved. In this study, we described a comprehensive disease-responding lncRNA profiles in defense against a cotton fungal disease Verticillium dahliae. We further revealed the conserved and specific characters of disease responding process between two cotton species. Conservatively for two cotton species, we found the expression dominance of induced lncRNAs in the Dt subgenome, indicating a biased induction pattern in the co-existing subgenomes of allotetraploid cotton. Comparative analysis of lncRNA expression and their proposed functions in resistant Gossypium barbadense cv. ‘7124′ versus susceptible G. hirsutum cv. ‘YZ1′ revealed their distinct disease response mechanisms. Species-specific (LS) lncRNAs containing more SNPs displayed a fiercer inducing level post infection than the species-conserved (core) lncRNAs. Gene Ontology enrichment of LS lncRNAs and core lncRNAs indicates distinct roles in the process of biotic stimulus. Further functional analysis showed that two core lncRNAs GhlncNAT-ANX2- and GhlncNAT-RLP7- silenced seedlings displayed an enhanced resistance towards V. dahliae and Botrytis cinerea, possibly associated with the increased expression of LOX1 and LOX2. This study represents the first characterization of lncRNAs involved in resistance to fungal disease and provides new clues to elucidate cotton disease response mechanism.

Journal ArticleDOI
TL;DR: The effects of the overproduction of one, two or three desaturase‐encoding cDNAs in N. oceanica CCMP1779 are tested and the feasibility of gene stacking in this genetically tractable oleaginous microalga is proved.
Abstract: Nannochloropsis oceanica is an oleaginous microalga rich in ω3long-chain polyunsaturated fatty acids (LC-PUFAs) content, in the form of eicosapentaenoic acid (EPA). We identified the enzymes involved in LC-PUFA biosynthesis in N. oceanica CCMP1779 and generated multigene expression vectors aiming at increasing LC-PUFA content in vivo. We isolated the cDNAs encoding four fatty acid desaturases (FAD) and determined their function by heterologous expression in S. cerevisiae. To increase the expression of multiple fatty acid desaturases in N. oceanica CCMP1779 we developed a genetic engineering toolkit that includes an endogenous bidirectional promoter and optimized peptide bond skipping 2A peptides. The toolkit also includes multiple epitopes for tagged fusion protein production and two antibiotic resistance genes. We applied this toolkit, towards building a gene stacking system for N. oceanica that consists of two vector series, pNOC-OX and pNOC-stacked. These tools for genetic engineering were employed to test the effects of the overproduction of one, two or three desaturase encoding cDNAs in N. oceanica CCMP1779 and prove the feasibility of gene stacking in this genetically tractable oleaginous microalga. All FAD overexpressing lines had considerable increases in the proportion of LC-PUFAs, with the overexpression of Δ12 and Δ5 FAD encoding sequences leading to an increase in the final ω3 product, EPA. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: The results show that the dmc1 promoter‐controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISpr/Cas 9 system is important for enhancing the efficiency of targeted genome editing in plants.
Abstract: Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi-allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole-genome resequencing indicated that no off-target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter-controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.

Journal ArticleDOI
TL;DR: The results demonstrate that QTL mapping and GBS‐GWAS represent a powerful combined approach for the identification of loci controlling complex traits and identify five candidate genes known to be involved in capsaicinoid biosynthesis.
Abstract: Capsaicinoids are unique compounds produced only in peppers (Capsicum spp.). Several studies using classical quantitative trait loci (QTLs) mapping and genomewide association studies (GWAS) have identified QTLs controlling capsaicinoid content in peppers; however, neither the QTLs common to each population nor the candidate genes underlying them have been identified due to the limitations of each approach used. Here, we performed QTL mapping and GWAS for capsaicinoid content in peppers using two recombinant inbred line (RIL) populations and one GWAS population. Whole-genome resequencing and genotyping by sequencing (GBS) were used to construct high-density single nucleotide polymorphism (SNP) maps. Five QTL regions on chromosomes 1, 2, 3, 4 and 10 were commonly identified in both RIL populations over multiple locations and years. Furthermore, a total of 109 610 SNPs derived from two GBS libraries were used to analyse the GWAS population consisting of 208 C. annuum-clade accessions. A total of 69 QTL regions were identified from the GWAS, 10 of which were co-located with the QTLs identified from the two biparental populations. Within these regions, we were able to identify five candidate genes known to be involved in capsaicinoid biosynthesis. Our results demonstrate that QTL mapping and GBS-GWAS represent a powerful combined approach for the identification of loci controlling complex traits.

Journal ArticleDOI
TL;DR: In this article, the pomegranate genome sequence was used to investigate the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the color formation in both peels and arils, and the unique ovule development processes.
Abstract: Summary Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding.

Journal ArticleDOI
TL;DR: These findings confirm the feasibility of co‐mutagenesis of a very large number of target alleles/copies for improvement in crops with complex genomes.
Abstract: Summary Sugarcane is the world's most efficient feedstock for commercial production of bioethanol due to its superior biomass production and accumulation of sucrose in stems. Integrating first and second generation ethanol conversion processes will enhance the biofuel yield per unit area by utilizing both sucrose as well as cell wall bound sugars for fermentation. RNAi suppression of the lignin biosynthetic gene caffeic acid O-methyltransferase (COMT) has been demonstrated to improve bioethanol production from lignocellulosic biomass. Genome editing has been used in a number of crops for creation of loss of function phenotypes but is very challenging in sugarcane due to its highly polyploid genome. In this study, a conserved region of COMT was targeted with a single Transcription Activator-Like Effector Nuclease (TALEN) pair for multi-allelic mutagenesis to modify lignin biosynthesis in sugarcane. Field grown TALEN mediated COMT mutants showed up to 19.7% lignin reduction and significantly decreased syringyl to guaiacyl (S/G) ratio resulting in an up to 43.8% improved saccharification efficiency. Biomass production of COMT mutant lines with superior saccharification efficiency did not differ significantly from the original cultivar under replicated field conditions. Sanger sequencing of cloned COMT amplicons (1351-1657 bp) revealed co-editing of 107 of the 109 unique COMT copies/alleles in vegetative progeny of line CB6 using a single TALEN pair. Line CB6 combined altered cell wall composition and drastically improved saccharification efficiency with good agronomic performance. These findings confirm the feasibility of co-mutagenesis of a very large number of target alleles/copies for improvement of crops with complex genomes. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: The results indicate that the CRISPR vectors can be used to edit the wild strawberry genome at a high efficiency and that both sgRNA design and appropriate U6 promoters contribute to the success of genomic editing.
Abstract: The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is an effective genome editing tool for plant and animal genomes. However, there are still few reports on the successful application of CRISPR-Cas9 to horticultural plants, especially with regard to germ-line transmission of targeted mutations. Here, we report high-efficiency genome editing in the wild strawberry Fragaria vesca and its successful application to mutate the auxin biosynthesis gene TAA1 and auxin response factor 8 (ARF8). In our CRISPR system, the Arabidopsis U6 promoter AtU6-26 and the wild strawberry U6 promoter FveU6-2 were each used to drive the expression of sgRNA, and both promoters were shown to lead to high-efficiency genome editing in strawberry. To test germ-line transmission of the edited mutations and new mutations induced in the next generation, the progeny of the primary (T0) transgenic plants carrying the CRISPR construct was analysed. New mutations were detected in the progeny plants at a high efficiency, including large deletions between the two PAM sites. Further, T1 plants harbouring arf8 homozygous knockout mutations grew considerably faster than wild-type plants. The results indicate that our CRISPR vectors can be used to edit the wild strawberry genome at a high efficiency and that both sgRNA design and appropriate U6 promoters contribute to the success of genomic editing. Our results open up exciting opportunities for engineering strawberry and related horticultural crops to improve traits of economic importance.