scispace - formally typeset
Journal ArticleDOI

A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces

Cajo J. Braak
- 01 Sep 2006 - 
- Vol. 16, Iss: 3, pp 239-249
TLDR
The essential ideas of DE and MCMC are integrated, resulting in Differential Evolution Markov Chain (DE-MC), a population MCMC algorithm, in which multiple chains are run in parallel, showing simplicity, speed of calculation and convergence, even for nearly collinear parameters and multimodal densities.
Abstract
Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carlo (MCMC) simulation. This paper integrates the essential ideas of DE and MCMC, resulting in Differential Evolution Markov Chain (DE-MC). DE-MC is a population MCMC algorithm, in which multiple chains are run in parallel. DE-MC solves an important problem in MCMC, namely that of choosing an appropriate scale and orientation for the jumping distribution. In DE-MC the jumps are simply a fixed multiple of the differences of two random parameter vectors that are currently in the population. The selection process of DE-MC works via the usual Metropolis ratio which defines the probability with which a proposal is accepted. In tests with known uncertainty distributions, the efficiency of DE-MC with respect to random walk Metropolis with optimal multivariate Normal jumps ranged from 68% for small population sizes to 100% for large population sizes and even to 500% for the 97.5% point of a variable from a 50-dimensional Student distribution. Two Bayesian examples illustrate the potential of DE-MC in practice. DE-MC is shown to facilitate multidimensional updates in a multi-chain "Metropolis-within-Gibbs" sampling approach. The advantage of DE-MC over conventional MCMC are simplicity, speed of calculation and convergence, even for nearly collinear parameters and multimodal densities.

read more

Content maybe subject to copyright    Report

Citations
More filters

Stan: A Probabilistic Programming Language.

TL;DR: Stan is a probabilistic programming language for specifying statistical models that provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler and an adaptive form of Hamiltonian Monte Carlo sampling.
Journal ArticleDOI

Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.

TL;DR: Using a variety of statistical and dynamic modeling approaches, the authors estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants, and a fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases.
Journal ArticleDOI

Age-dependent effects in the transmission and control of COVID-19 epidemics.

TL;DR: It is found that interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low.
Journal ArticleDOI

First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

Kazunori Akiyama, +254 more
TL;DR: In this article, the authors present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign, and find that >50% of the total flux at arcsecond scales comes from near the horizon and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole.
Journal ArticleDOI

Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

TL;DR: The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems andErgodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches.
References
More filters
Journal ArticleDOI

Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces

TL;DR: In this article, a new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented, which requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
Book

Bayesian Data Analysis

TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided.
Book

Mixed-Effects Models in S and S-PLUS

TL;DR: Linear Mixed-Effects and Nonlinear Mixed-effects (NLME) models have been studied in the literature as mentioned in this paper, where the structure of grouped data has been used for fitting LME models.
BookDOI

Markov Chain Monte Carlo in Practice

TL;DR: The Markov Chain Monte Carlo Implementation Results Summary and Discussion MEDICAL MONITORING Introduction Modelling Medical Monitoring Computing Posterior Distributions Forecasting Model Criticism Illustrative Application Discussion MCMC for NONLINEAR HIERARCHICAL MODELS.
Book

Monte Carlo Statistical Methods

TL;DR: This new edition contains five completely new chapters covering new developments and has sold 4300 copies worldwide of the first edition (1999).
Related Papers (5)