scispace - formally typeset
Open AccessJournal ArticleDOI

Array programming with NumPy

Reads0
Chats0
TLDR
In this paper, the authors review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data, and their evolution into a flexible interoperability layer between increasingly specialized computational libraries is discussed.
Abstract
Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis. NumPy is the primary array programming library for Python; here its fundamental concepts are reviewed and its evolution into a flexible interoperability layer between increasingly specialized computational libraries is discussed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Reverse engineering learned optimizers reveals known and novel mechanisms

TL;DR: This work studies learned optimizers trained from scratch on three disparate tasks, and discovers that they have learned interpretable mechanisms, including: momentum, gradient clipping, learning rate schedules, and a new form of learning rate adaptation.
Journal ArticleDOI

Origins of Hot Jupiters from the Stellar Obliquity Distribution

TL;DR: In this paper , the authors show that the joint obliquity and eccentricity distributions observed today are consistent with the outcomes of high-eccentricity migration, with no strict requirement to invoke the other hot Jupiter formation mechanisms of disk migration or in-situ formation.
Journal ArticleDOI

Tracking cell lineages in 3D by incremental deep learning

- 06 Jan 2022 - 
TL;DR: ELEPHANT as discussed by the authors is an interactive platform for 3D cell tracking that takes an incremental approach to deep learning, allowing users to implement cycles of incremental learning starting from a few annotated nuclei.
Journal ArticleDOI

Slip activity during low-stress cold creep deformation in a near-α titanium alloy

TL;DR: In this paper , two different bimodal microstructures (fine and coarse transformation product) of TIMETAL®834 were investigated at stress levels below the 0.2% proof stress using a combination of grain orientation mapping and in-situ electron microscopy imaging.
References
More filters
Journal Article

Scikit-learn: Machine Learning in Python

TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Journal ArticleDOI

Matplotlib: A 2D Graphics Environment

TL;DR: Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.
Journal ArticleDOI

SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python

TL;DR: SciPy as discussed by the authors is an open source scientific computing library for the Python programming language, which includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics.
Proceedings ArticleDOI

TensorFlow: a system for large-scale machine learning

TL;DR: TensorFlow as mentioned in this paper is a machine learning system that operates at large scale and in heterogeneous environments, using dataflow graphs to represent computation, shared state, and the operations that mutate that state.
Related Papers (5)