scispace - formally typeset
Open AccessJournal ArticleDOI

Cannabinoid receptor localization in brain

TLDR
The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Abstract
[3H]CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study

TL;DR: The results suggest that the presently characterized cannabinoid receptor mediates physiological and behavioral effects of natural and synthetic cannabinoids, because it is strongly coupled to guanine nucleotide regulatory proteins and is discretely localized to cortical, basal ganglia, and cerebellar structures involved with cognition and movement.
Journal ArticleDOI

The Endocannabinoid System as an Emerging Target of Pharmacotherapy

TL;DR: A comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy is provided.
Journal ArticleDOI

The molecular logic of endocannabinoid signalling

TL;DR: The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis).
Journal ArticleDOI

Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses.

TL;DR: The transient suppression of GABA-mediated transmission that follows depolarization of hippocampal pyramidal neurons is mediated by retrograde signalling through release of endogenous cannabinoids, indicating that the function of endogenous cannabinoid released by depolarized hippocampal neurons might be to downregulate GABA release.
Journal ArticleDOI

Role of Endogenous Cannabinoids in Synaptic Signaling

TL;DR: The synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation, and the fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release.
References
More filters
Journal Article

Protein Measurement with the Folin Phenol Reagent

TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.
Journal ArticleDOI

Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.

TL;DR: The effect of various drugs on the extracellular concentration of dopamine in two terminal dopaminergic areas, the nucleus accumbens septi (a limbic area) and the dorsal caudate nucleus (a subcortical motor area), was studied in freely moving rats by using brain dialysis as mentioned in this paper.
Journal Article

Determination and characterization of a cannabinoid receptor in rat brain.

TL;DR: The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.
Journal ArticleDOI

Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain

TL;DR: In this article, the distribution of D1 and D2 receptors was studied in coronal sections of rat brain, using quantitative autoradiography, and the binding of both ligands to sections from brain and from a homogenate of caudate putamen (CPu mash) reached equilibrium within 80 min at 37 degrees C.
Related Papers (5)