scispace - formally typeset
Open AccessJournal ArticleDOI

Cannabinoid receptor localization in brain

TLDR
The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Abstract
[3H]CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Downregulation of rat brain cannabinoid binding sites after chronic Δ9-tetrahydrocannabinol treatment

TL;DR: Whether cannabinoid receptors exhibit downregulation as a consequence of the chronic exposure to delta 9-tetrahydrocannabinol (THC), which might explain certain tolerance phenomena observed in relation to motor and limbic effects of marijuana, is examined.
Journal Article

Assessment of Anandamide Interaction with the Cannabinoid Brain Receptor: SR 141716A Antagonism Studies in Mice and Autoradiographic Analysis of Receptor Binding in Rat Brain

TL;DR: The results presented herein raise the possibility that anandamide may not be producing all of its effects by a direct interaction with the CB1 receptor, despite failure of SR 141716A to block its pharmacological effects in mice.
Journal ArticleDOI

Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes

TL;DR: The neuronal cannabinoid receptor clone was expressed of saturable [3H]WIN 55,212-2 binding sites and co-expression of the cannabinoid receptor with cRNA coding for the G-protein-gated inwardly rectifying K+ channel (GIRK1) resulted in oocytes exhibiting large inward K+ currents in response to the cannabinoid agonists.
References
More filters
Journal Article

Protein Measurement with the Folin Phenol Reagent

TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.
Journal ArticleDOI

Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.

TL;DR: The effect of various drugs on the extracellular concentration of dopamine in two terminal dopaminergic areas, the nucleus accumbens septi (a limbic area) and the dorsal caudate nucleus (a subcortical motor area), was studied in freely moving rats by using brain dialysis as mentioned in this paper.
Journal Article

Determination and characterization of a cannabinoid receptor in rat brain.

TL;DR: The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.
Journal ArticleDOI

Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain

TL;DR: In this article, the distribution of D1 and D2 receptors was studied in coronal sections of rat brain, using quantitative autoradiography, and the binding of both ligands to sections from brain and from a homogenate of caudate putamen (CPu mash) reached equilibrium within 80 min at 37 degrees C.
Related Papers (5)