scispace - formally typeset
Open AccessJournal ArticleDOI

COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

TLDR
Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
Abstract
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cancer drug resistance: an evolving paradigm

TL;DR: There are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.
Journal ArticleDOI

Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

TL;DR: Recently devised sgRNA design rules are used to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results, and a metric to predict off-target sites is developed.
References
More filters
Journal ArticleDOI

MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling

TL;DR: It is proposed that MET amplification may promote drug resistance in other ERBB-driven cancers as well after it was found that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors.
Journal ArticleDOI

The landscape of somatic copy-number alteration across human cancers

Rameen Beroukhim, +86 more
- 18 Feb 2010 - 
TL;DR: It is demonstrated that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival, and a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Journal ArticleDOI

Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification

TL;DR: It is found that drug resistance is associated with the reactivation of BCR-ABL signal transduction in all cases examined and a strategy for identifying inhibitors of STI-571 resistance is suggested.
Related Papers (5)