scispace - formally typeset
Open AccessJournal ArticleDOI

CRISPR-Cas guides the future of genetic engineering.

Gavin J. Knott, +1 more
- 31 Aug 2018 - 
- Vol. 361, Iss: 6405, pp 866-869
Reads0
Chats0
TLDR
The basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies are described, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies.
Abstract
The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Advances in oligonucleotide drug delivery

TL;DR: An overview of oligonucleotide-based drug platforms is provided, focusing on key approaches — including chemical modification, bioconjugation and the use of nanocarriers — which aim to address the delivery challenge.
Journal ArticleDOI

Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery.

TL;DR: The challenges for clinical translation of RNA-based therapeutics are discussed, with an emphasis on recent advances in biomaterials and delivery strategies, and an overview of the applications of mRNA-based delivery for protein therapy, gene editing, and vaccination are presented.
Journal ArticleDOI

The promise and challenge of therapeutic genome editing

Jennifer A. Doudna
- 12 Feb 2020 - 
TL;DR: The scientific, technical and ethical aspects of using CRISPR technology for therapeutic applications in humans are discussed, highlighting both opportunities and challenges of this technology to treat, cure and prevent genetic disease.
Journal ArticleDOI

DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer.

TL;DR: An update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization is provided and challenges for ionizing radiation-induced signal transduction and targeted therapy are discussed.
References
More filters
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

RNA-Guided Human Genome Engineering via Cas9

TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Journal ArticleDOI

CRISPR provides acquired resistance against viruses in prokaryotes

TL;DR: It is found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences, and CRISPR provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
Related Papers (5)