scispace - formally typeset
Open AccessJournal ArticleDOI

Eddington-limited Accretion and the Black Hole Mass Function at Redshift 6

Reads0
Chats0
TLDR
In this paper, a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44 was found to have a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit.
Abstract
We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-infrared spectroscopy of nine CFHQS quasars at z ~ 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus, these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is ~104 times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high redshift than is observed at low redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only ~102 times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass-stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.

read more

Citations
More filters
Journal ArticleDOI

An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30

TL;DR: The discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30, which has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars.
References
More filters
Book

Numerical Recipes in C: The Art of Scientific Computing

TL;DR: Numerical Recipes: The Art of Scientific Computing as discussed by the authors is a complete text and reference book on scientific computing with over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, with many new topics presented at the same accessible level.
Journal ArticleDOI

Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation

TL;DR: In this paper, the authors show that the tensor-to-scalar ratio r 1 is disfavored regardless of r. They provide a set of "WMAP distance priors, to test a variety of dark energy models.
Journal ArticleDOI

A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies

TL;DR: The mass of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05.
Related Papers (5)