scispace - formally typeset
Open AccessJournal ArticleDOI

Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters

TLDR
In this article, an ultra-high-density array that tiles the promoters of 56 cell-cycle genes was used to interrogate 108 samples representing diverse perturbations, identifying 216 transcribed regions that encode putative lncRNAs, many with RT-PCR-validated periodic expression during the cell cycle.
Abstract
Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR-validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Molecular Mechanisms of Long Noncoding RNAs

TL;DR: These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution.
Journal ArticleDOI

Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses

TL;DR: It is found that lincRNA expression is strikingly tissue-specific compared with coding genes, and that l incRNAs are typically coexpressed with their neighboring genes, albeit to an extent similar to that of pairs of neighboring protein-coding genes.
Journal ArticleDOI

Genome Regulation by Long Noncoding RNAs

TL;DR: Long noncoding RNAs (lncRNAs) as discussed by the authors form extensive networks of ribonucleoprotein (RNP) complexes with numerous chromatin regulators and then target these enzymatic activities to appropriate locations in the genome.
Journal ArticleDOI

Long non-coding RNAs: new players in cell differentiation and development

TL;DR: The function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development are described.
Journal ArticleDOI

Long Noncoding RNAs in Cancer Pathways

TL;DR: It is understood that lncRNAs drive many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein, and RNA, making these molecules attractive targets for therapeutic intervention in the fight against cancer.
References
More filters
Journal ArticleDOI

MicroRNAs: small RNAs with a big role in gene regulation

TL;DR: Two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events and indicate the existence of multiple RISCs that carry out related but specific biological functions.
Journal ArticleDOI

CDK inhibitors: positive and negative regulators of G1-phase progression

TL;DR: This work challenges previous assumptions about how the G1/S transition of the mammalian cell cycle is governed, helps explain some enigmatic features of cell cycle control that also involve the functions of the retinoblastoma protein (Rb) and the INK4 proteins, and changes the thinking about how either p16 loss or overexpression of cyclin D-dependent kinases contribute to cancer.
Journal ArticleDOI

Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

TL;DR: It is shown that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression, indicating that l incRNAs have active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
Related Papers (5)