scispace - formally typeset
Open AccessJournal Article

Global Tree Cover and Biomass Carbon on Agricultural Land

TLDR
Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had thelargest decreases.
Abstract
Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha -1 . Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The biomass distribution on Earth

TL;DR: The overall biomass composition of the biosphere is assembled, establishing a census of the ≈550 gigatons of carbon (Gt C) of biomass distributed among all of the kingdoms of life and shows that terrestrial biomass is about two orders of magnitude higher than marine biomass and estimate a total of ≈6 Gt C of marine biota, doubling the previous estimated quantity.

Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development

TL;DR: In this paper, the authors present a survey of the work of the authors of this paper, including the following authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Is
Journal ArticleDOI

Unexpectedly large impact of forest management and grazing on global vegetation biomass

TL;DR: It is shown, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon, in the hypothetical absence of land use, which implies that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change.
References
More filters
Journal ArticleDOI

Solutions for a cultivated planet

TL;DR: It is shown that tremendous progress could be made by halting agricultural expansion, closing ‘yield gaps’ on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste, which could double food production while greatly reducing the environmental impacts of agriculture.
Journal ArticleDOI

Soil carbon sequestration impacts on global climate change and food security.

TL;DR: In this article, the carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon.
Posted ContentDOI

World agriculture towards 2030/2050: the 2012 revision

TL;DR: In this paper, a re-make of the Interim Report World Agriculture: towards 2030/2050 (FAO, 2006) is presented, which includes a Chapter 4 on production factors (land, water, yields, fertilizers).
Related Papers (5)