scispace - formally typeset
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
- Vol. 354, Iss: 6348, pp 56-58
TLDR
Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract
THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

read more

Citations
More filters
Journal ArticleDOI

Functionalization of carbon nanotubes

TL;DR: The functionalization of single wall carbon nanotubes (SWCNTs) is a very actively discussed topic in contemporary nanotube literature because the planned modification of SWCNT properties is believed to open the road towards real nanotechnology applications as discussed by the authors.
Journal ArticleDOI

Novel properties of graphene nanoribbons: a review

Abstract: Low-dimensional materials are of great interest to both theorists and experimentalists, owing to their novel electronic properties which arise mainly because of a host of quantum confinement effects. Recent experimental findings of graphene have provided a new platform to explore the interesting electronic properties in strictly two dimensions. In this feature article, we review the novel properties of an interesting class of quasi one dimensional materials, known as graphene nanoribbons, which can be obtained by finite termination of graphene sheet with smooth edges. Recent experimental sophistications provide various physical and chemical ways to materialize these systems. Two different edge geometries, namely zigzag and armchair, arising from the finite termination of graphene, control the electronic properties of graphene nanoribbons. Here we attempt to give an overview of their interesting electronic, magnetic, optical, conduction properties and explore possible ways of enhancing their device applicability by a number of ways including external perturbations, doping and chemical modifications.
Journal ArticleDOI

Anomalous potential barrier of double-wall carbon nanotube

TL;DR: In this article, the stability of double-wall carbon nanotubes is investigated for various chirality pairs, and the potential barrier for the relative displacement of the inner and outer nanotube layers is found to depend significantly on the chiral difference of the pair.
Journal ArticleDOI

Recent progress in synthesis, properties and potential applications of SiC nanomaterials

TL;DR: A comprehensive review of the recent progress on the synthesis, novel properties, and applications of SiC nanomaterials is provided in this paper, with an emphasis on vapor-based and solution-based methods.
Journal ArticleDOI

Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

TL;DR: Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilized on transducer surfaces and enzyme immobilization on these species is beneficial and timely.
References
More filters
Journal ArticleDOI

C 60 : Buckminsterfullerene

TL;DR: In this article, the authors proposed a truncated icosahedron, a polygon with 60 vertices and 32 faces, 12 of which are pentagonal and 20 hexagonal.
Journal ArticleDOI

Solid C60: a new form of carbon

TL;DR: In this article, a new form of pure, solid carbon has been synthesized consisting of a somewhat disordered hexagonal close packing of soccer-ball-shaped C60 molecules.
Journal ArticleDOI

Filamentous growth of carbon through benzene decomposition

TL;DR: Carbon fibres have been prepared by pyrolysing a mixture of benzene and hydrogen at about 1100°C and have been studied by high resolution electron microscopy.
Journal ArticleDOI

Cohesive mechanism and energy bands of solid C60.

TL;DR: In this paper, the authors present microscopic total energy calculations which provide a cohesive property and electronic structures of a new form of solid carbon, the face-centered-cubic crystal (fcc ${\mathrm{C}}_{60}$).
Journal ArticleDOI

Growth, Structure, and Properties of Graphite Whiskers

TL;DR: Graphite whiskers have been grown in a dc arc under a pressure of 92 atmospheres of argon and at 3900°K as discussed by the authors, with recoverable lengths up to 3 cm. They are embedded in a solid matrix of graphite which builds up by diffusion of carbon vapor from the positive to the negative electrode.
Related Papers (5)