scispace - formally typeset
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
- Vol. 354, Iss: 6348, pp 56-58
TLDR
Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract
THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

read more

Citations
More filters
Journal ArticleDOI

Thermal Expansion of Single Wall Carbon Nanotubes

TL;DR: In this article, the authors developed an analytical method to determine the coefficient of thermal expansion (CTE) for single wall carbon nanotubes (CNTs) and found that all CTEs are negative at low and room temperature and become positive at high temperature.
Journal ArticleDOI

X-ray diffraction characterization on the alignment degree of carbon nanotubes

TL;DR: In this article, a qualitative relationship between peak intensities of the X-ray diffraction patterns and the degrees of nanotube alignments was established, which provides a simple way to characterize the alignment degree of as-grown large-area CNTs.
Journal ArticleDOI

Nanomechanics of single and multiwalled carbon nanotubes

TL;DR: In this article, the buckling behavior of single-walled and multiwalled carbon nanotubes is studied under axial compression in order to examine the effects of the number of layers on the structural properties of the multi-walled carbon nano-graphs.
Journal ArticleDOI

Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes

TL;DR: In this paper, a good epitaxial relationship between the Zn core and ZnO shell was observed, and misfit dislocations were observed at the interface, which accommodated the relatively large lattice mismatch.
Journal ArticleDOI

From graphene constrictions to single carbon chains

TL;DR: In this article, an atomic-resolution observation and analysis of graphene constrictions and ribbons with sub-nanometer width was performed by imaging side spherical aberration-corrected transmission electron microscopy at 80?kV.
References
More filters
Journal ArticleDOI

C 60 : Buckminsterfullerene

TL;DR: In this article, the authors proposed a truncated icosahedron, a polygon with 60 vertices and 32 faces, 12 of which are pentagonal and 20 hexagonal.
Journal ArticleDOI

Solid C60: a new form of carbon

TL;DR: In this article, a new form of pure, solid carbon has been synthesized consisting of a somewhat disordered hexagonal close packing of soccer-ball-shaped C60 molecules.
Journal ArticleDOI

Filamentous growth of carbon through benzene decomposition

TL;DR: Carbon fibres have been prepared by pyrolysing a mixture of benzene and hydrogen at about 1100°C and have been studied by high resolution electron microscopy.
Journal ArticleDOI

Cohesive mechanism and energy bands of solid C60.

TL;DR: In this paper, the authors present microscopic total energy calculations which provide a cohesive property and electronic structures of a new form of solid carbon, the face-centered-cubic crystal (fcc ${\mathrm{C}}_{60}$).
Journal ArticleDOI

Growth, Structure, and Properties of Graphite Whiskers

TL;DR: Graphite whiskers have been grown in a dc arc under a pressure of 92 atmospheres of argon and at 3900°K as discussed by the authors, with recoverable lengths up to 3 cm. They are embedded in a solid matrix of graphite which builds up by diffusion of carbon vapor from the positive to the negative electrode.
Related Papers (5)