scispace - formally typeset
Open AccessJournal ArticleDOI

Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation.

Kiyoshi Miyata, +2 more
- 01 Oct 2017 - 
- Vol. 3, Iss: 10, pp 1-10
TLDR
It is shown that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties in lead halide perovskites.
Abstract
Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Properties and potential optoelectronic applications of lead halide perovskite nanocrystals

TL;DR: The prospects of LHP NCs for optoelectronic applications such as in television displays, light-emitting devices, and solar cells are surveyed, emphasizing the practical hurdles that remain to be overcome.
Journal ArticleDOI

Two-Dimensional Hybrid Halide Perovskites: Principles and Promises.

TL;DR: This Perspective begins with a historical flashback to early reports before the "perovskite fever", and follows this original work to its fruition in the present day, where 2D halide perovskites are in the spotlight of current research, offering characteristics desirable in high-performance optoelectronics.
Journal ArticleDOI

Minimizing non-radiative recombination losses in perovskite solar cells

TL;DR: In this paper, the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells, and evaluate their impact on device performance are analyzed, and some notable advances in mitigating these losses are highlighted.
Journal ArticleDOI

Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties

TL;DR: In this article, the authors summarized recent developments in the synthesis and characterization of metal halide perovskite nanostructures with controllable compositions, dimensionality, morphologies and orientations.
Journal ArticleDOI

From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives

TL;DR: Reviews on the theoretical understanding of the electronic, optical, and defect properties of Pb and Pb-free halide perovskites andperovskite derivatives are provided, as well as the experimental results available in the literature.
References
More filters
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3

TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Journal ArticleDOI

Statistics of the Recombinations of Holes and Electrons

TL;DR: In this article, the statistics of the recombination of holes and electrons in semiconductors were analyzed on the basis of a model in which the recombinations occurred through the mechanism of trapping.
Journal ArticleDOI

Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals

TL;DR: It is found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm−2) illumination and exceed 3 millimeters under weak light for both electrons and holes.
Journal ArticleDOI

Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Related Papers (5)