scispace - formally typeset
Open AccessJournal ArticleDOI

Link prediction in complex networks: A survey

Reads0
Chats0
TLDR
Recent progress about link prediction algorithms is summarized, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graph embedding techniques, applications, and performance: A survey

TL;DR: A comprehensive and structured analysis of various graph embedding techniques proposed in the literature, and the open-source Python library, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM ), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
Journal ArticleDOI

A Review of Relational Machine Learning for Knowledge Graphs

TL;DR: This paper provides a review of how statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph) and how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web.
Proceedings Article

Link prediction based on graph neural networks

TL;DR: A novel $\gamma$-decaying heuristic theory is developed that unifies a wide range of heuristics in a single framework, and proves that all these heuristic can be well approximated from local subgraphs.
Proceedings Article

Network representation learning with rich text information

TL;DR: By proving that DeepWalk, a state-of-the-art network representation method, is actually equivalent to matrix factorization (MF), this work proposes text-associated DeepWalk (TADW), which incorporates text features of vertices into network representation learning under the framework of Matrix factorization.
Journal ArticleDOI

A Survey on Network Embedding

TL;DR: Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure as discussed by the authors, and a significant amount of progress has been made toward this emerging network analysis paradigm.
References
More filters
Journal ArticleDOI

Evaluating collaborative filtering recommender systems

TL;DR: The key decisions in evaluating collaborative filtering recommender systems are reviewed: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole.
Journal ArticleDOI

The structure of the nervous system of the nematode Caenorhabditis elegans

TL;DR: The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections as discussed by the authors.
Journal ArticleDOI

Assortative mixing in networks.

TL;DR: This work proposes a model of an assortatively mixed network and finds that networks percolate more easily if they are assortative and that they are also more robust to vertex removal.
Journal ArticleDOI

Finding community structure in networks using the eigenvectors of matrices

TL;DR: A modularity matrix plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations, and a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong are proposed.
Proceedings Article

An Information-Theoretic Definition of Similarity

Dekang Lin
TL;DR: This work presents an informationtheoretic definition of similarity that is applicable as long as there is a probabilistic model and demonstrates how this definition can be used to measure the similarity in a number of different domains.